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Abstract

These notes were written with Monte Carlo algorithms primarily in mind. Topics cov-
ered are basic (discrete) random variables, techniques on approximating and bounding
combinations and probabilities (emphasis on Hoeffding’s bound), the central limit theorem,
the weak and strong law of large numbers, and fundamental problems that show these tech-
niques in action. Basic definitions on Markov Chains are also presented. In the appendix
we find the basic randomized algorithmic schemes, as well as an overview of the complexity
classes where these algorithms fall. Most definitions and results are drawn from [BT02].

1 Basics

Definition 1.1 (Probability Mass Function (PMF)). The PMF pX of a discrete random
variable X is a function that describes the probability mass of each (discrete) value x that
X can take; i.e. pX(x) = Pr[X = x].

1.1 (Discrete) Random Variables

Definition 1.2 (Bernoulli Random Variable). X is a Bernoulli random variable that takes
two values 0 and 1 depending on the outcome of a random process (e.g. tossing a coin once).
Its PMF is:

pX(x) =

{
p , if x = 1,

1− p , if x = 0.

The expected value of X is E[X] = p, while the variance is Var[X] = p(1− p).

Definition 1.3 (Binomial Random Variable). Y is a Binomial random variable with pa-

rameters N and p that is constructed by N Bernoulli random variables X1, . . . ,XN, each of
which is 1 with probability p. It is defined as the sum Y =

∑N
i=1 Xi. Its PMF is:

N∑

k=0

pY(k) = 1pY(k) = Pr[Y = k] =
(

N
k

)

pk(1− p)N−k, k = 0, 1, . . . ,N.

The expected value of Y is E[Y] = Np, while the variance is Var[Y] = Np(1− p).

Definition 1.4 (Geometric Random Variable). Given a sequence of Bernoulli random
variables X1,X2, . . . , each of which is 1 with probability p, Z is a Geometric random variable
expressing the minimum i such that Xi = 1. Its PMF is:

∞∑

k=1

pZ(k) = 1pZ(k) = (1− p)k−1p, k = 1, . . . ,N.

The expected value of Z is E[Z] = 1
p
, while the variance is Var[Z] = 1−p

p2 .

Definition 1.5 (Poisson Random Variable). S is a Poisson random variable with parameter
λ and PMF given by:

N∑

k=0

pS(k) = 1pS(k) = e−λ λ
k

k!
, k = 0, 1, . . . ,N.

The expected value of S is E[S] = λ, and the variance is also Var[S] = λ.
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1.2 Bernoulli process

Informally it is a sequence of independent coin tosses.

Definition 1.6 (Bernoulli process). It is a sequence X1,X2, . . . of independent Bernoulli
random variables Xi such that for every i it holds:

{
Pr[Xi = 1] = Pr[success at the ith trial] = p

Pr[Xi = 0] = Pr[failure at the ith trial] = 1− p

2 Approximating and Bounding

In this section important tools on approximating and bounding probabilities will be explored.

2.1 The Cauchy-Schwartz Inequality
(

n∑

i=1

xiyi

)2

6

(

n∑

i=1

x2i

)(

n∑

i=1

y2
i

)

(1)

2.2 Bounding Combinations

Let 1 < k < n, with k,n ∈ N. Then:

(n

k

)k

<
(n

k

)

<
(ne

k

)k

and
(n

e

)n

< n! (2)

2.3 Common Approximations

Exponential: (1− x)N 6 e−Nx.

Poisson: The Poisson PMF with parameter λ is a good approximation for a binomial PMF
with parameters N and p, provided that λ = Np, N is very large, and p is very small.

2.4 Bounding Probabilities

Union Bound: Let A1,A2, . . . ,AN be N events in a probability space. Then

Pr

[

N
⋃

i=1

Ai

]

6

N∑

i=1

Pr[Ai] 6 Nmax
i

{Pr[Ai]} (3)

The first inequality is equality for disjoint events Ai.

Markov’s Inequality: Any non-negative random variable X satisfies:

Pr[X > α] 6
E[X]

α
, ∀α > 0. (4)

Chebyshev’s Inequality: Let X be a r. v. with expected value µ and variance σ2. Then:

Pr[|X− µ| > α] 6
σ2

α2
, ∀α > 0. (5)

Remark 2.1 (Chebyshev vs. Markov). The Chebyshev inequality tends to give better bounds
than the Markov inequality, because it also uses information on the variance of X.
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Theorem 2.2 (Weak Law of Large Numbers). Let X1, . . . ,XN be a sequence of independent
identically distributed random variables, with expected value µ. For every ǫ > 0:

Pr

[
∣

∣

∣

∣

∣

1

N

N∑

i=1

Xi − µ

∣

∣

∣

∣

∣

> ǫ

]

→ 0, as N → ∞ (6)

Proof. Let X1, . . . ,XN be a sequence of independent identically distributed random vari-
ables, with expected value µ and variance σ2. Define the random variable Y = 1

N

∑N
i=1 Xi.

By linearity of expectation we get E[Y] = 1
N

∑N
i=1 E[Xi] = µ. Since all the Xi are indepen-

dent, the variance is Var[Y] = 1
N2

∑N
i=1 Var[Xi] =

σ2

N
. We now apply Chebyshev’s inequality

and obtain Pr[|Y − µ| > ǫ] 6 σ2

Nǫ2 , for any ǫ > 0.

2.4.1 Concentration and Tail Inequalities

Proposition 2.3 (Hoeffding’s Bound [Hoe63]). Let X1, . . . ,XN be N independent random

variables, each taking values in the range I = [α,β], and let µ denote the mean of their

expectations. Then:

Pr

[
∣

∣

∣

∣

∣

1

N

N∑

i=1

Xi − µ

∣

∣

∣

∣

∣

> ǫ

]

6 2e−2Nǫ2/(β−α)2 . (7)

Assuming we want to bound the quantity above by δ, it is enough N >

⌈

(β−α)2

2ǫ2 ln 2
δ

⌉

. Some

typical bounds obtained by the inequality are shown below: ǫ = Ω(1/
√
N)

δ

0.1 0.01 0.001

N 59, 915 105, 967 152, 019

(a) ǫ = 1

2
10−2 = 0.005

δ

0.1 0.01 0.001

N 5, 991, 465 10, 596, 635 15, 201, 805

(b) ǫ = 1

2
10−3 = 0.0005

Figure 1: Typical lower bounds on N when |I| = β− α = 1.

δ

0.1 0.01 0.001

N 239, 659 423, 866 608, 073

(a) ǫ = 1

2
10−2 = 0.005

δ

0.1 0.01 0.001

N 23, 965, 859 42, 386, 539 60, 807, 220

(b) ǫ = 1

2
10−3 = 0.0005

Figure 2: Typical lower bounds on N when |I| = β− α = 2.

Definition 2.4 (Martingale [AS08]). A martingale is a sequence X0, . . . ,XN of random fair gambling

variables so that for 0 6 i < N it holds:

E[Xi+1 | Xi,Xi−1, . . . ,X0] = Xi.

Proposition 2.5 (Azuma’s Inequality [Mau79, AS08]). Let c = X0, . . . ,XN be a martingale Azuma: c = 0

with |Xi+1 − Xi| 6 1 ∀ 0 6 i < N. Then:

Pr[|XN − c| > λ
√
N] < 2e−λ2/2 (8)

For λ =
√
2 ln 2 ≈ 1.17741 ⇒ 2e−λ2/2 = 1. Check tbl. 1 for some typical approximate values.
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λ 2 2.5 3

2e−λ2/2 0.270671 0.08787387 0.0222179931

Table 1: Typical bounds obtained for some λ by Azuma’s inequality.

2.4.2 Lower bounds on Tails [AS08, appendix]

In section 2.4.1 we obtained upper bounds on Pr[X > α] which were of the form e−cǫ2

. We
can also obtain lower bounds on Pr[X > α]; typically we get Pr[X > α] = Ω(e−cǫ2

e−dǫ).

3 Fundamental Problems

3.1 Coins

A coin has two sides; H and T. Set Pr[H] = p and Pr[T] = 1− p, where p is a fixed number.

3.1.1 Games with coins

How many heads H: Tossing a coin N times and recording the number of times H ap-
peared is a Binomial random variable.

First H: Tossing a coin until H comes up is a Geometric random variable.

Both H and T: The weighted sum p(1+ 1/(1− p)) + (1− p)(1+ 1/p) = 1/p+ p/(1− p)

expresses the expected amount of coin tosses in order to observe both H and T.

Fair coin: After N coin tosses, we observe |H| > |T| + λ
√
N or |H| 6 |T| − λ

√
N with

probability bounded by Azuma’s Inequality; eq. (8).

3.2 The Coupon Collector’s Problem1

Given N coupons what is the expected amount of trials in order to observe all N of them?
i.e. we are drawing coupons with replacement.

Let T be the total time to observe all N coupons, and let ti denote the time needed
to collect coupon i after i − 1 coupons have been collected; i.e. T =

∑N
i=1 ti. Note that

pi = (N− (i− 1))/N, and each ti is a geometric r.v. By linearity of expectation we get:

E[T ] =

N∑

i=1

E[ti] =

N∑

i=1

1

pi
=

N∑

i=1

N

N− (i− 1)
= N

N∑

i=1

1

N+ 1− i
= N

N∑

i=1

1

i
= N ·HN (9)

where HN is the Nth harmonic number. For large N we get:

E[T ] = N ·HN = N lnN+ γN+
1

2
−

1

12N2
+

1

120N4
+ o

(

1/N4
)

, (10)

where γ = limN→∞(HN− lnN) = 0.5772156649 . . . is the Euler-Mascheroni constant [Wei].
Hence, E[T ] = O (N lnN) . All the ti are independent, so the variance is:

Var[T ] =

N∑

i=1

Var[ti] =

N∑

i=1

1− pi

p2
i

<

N∑

i=1

1

p2
i

=

N∑

i=1

N2

(N+ 1− i)2
= N2

N∑

i=1

1

i2

< N2

∞∑

i=1

1

i2
= N2 · π

2

6
< 2 ·N2 (11)

1This problem is also known as Balls in Bins Problem.
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Applying Chebyshev’s inequality (5) to equations (9) and (11) we get

Pr[|T −N ·HN| > λN] <
2

λ2
. (12)

3.2.1 Generalized Coupon Collector’s Problem

Again we have N coupons, but this time we are interested in a subset K of them (|K| = k <

N). What we want is the minimum number of trials so that the probability some member

of K is missed is less than some predefined value η.
Let T be the number of trials. Then a member of K is missed in all T trials with

probability (1 − 1/N)T . By the Union Bound (eq. (3)) this probability is upper bounded
by k(1 − 1/N)T . By the exponential approximation this probability is upper bounded by
ke−T/N. By requiring this probability being less than η we get:

T > N ln(k/η). (13)

4 Central Limit Theorem

Theorem 4.1 (Central Limit Theorem). Let X1,X2, . . . ,XN be a sequence of independent

identically distributed random variables with common µ and variance σ2, and define

ZN =

∑N
i=1 Xi −Nµ

σ
√
N

. (14)

Then, the CDF of ZN converges to the standard normal CDF E[ZN] = 0
Var[ZN] = 1

Φ(z) =
1√
2π

∫z

−∞

e−x2/2dx, (15)

in the sense that

lim
N→∞

Pr[ZN 6 z] = Φ(z), for all z. (16)

Proposition 4.2 (De Moivre - Laplace Approximation to the Binomial). If SN is a bino-
mial random variable with parameters p and N, N is large, and κ, λ ∈ N, then

Pr[κ 6 SN 6 λ] ≈ Φ

(

λ+ 1/2−Np
√

Np(1− p)

)

−Φ

(

κ− 1/2−Np
√

Np(1− p)

)

(17)

Remark 4.3 (Quality). The closer p is to 0 or 1, the larger the N so that the approximation
is good. When p ≈ 0.5 ⇒ N around 40 to 50 already gives very good results.

Theorem 4.4 (Strong Law of Large Numbers). Let X1,X2, . . . ,XN be a sequence of inde-

pendent identically distributed random variables with mean µ. Then, the sequence of sample

means MN = 1
N

∑N
i=1 Xi converges to µ, with probability 1, in the sense that

Pr

[

lim
N→∞

1

N

N∑

i=1

Xi = µ

]

= 1. (18)

4.1 Applications

Example 1 (Coins Revisited). We toss a coin 25 times and 20 times we observe H. What
is the probability of this event, given that the coin is fair?

A direct computation yields (2520)2
−25 ≈ 0.0015834. Chebyshev yields Pr[|X − 12.5| >

7.5] 6 6.25
7.52

= 1/9 = 0.1. Hoeffding’s bound gives Pr [|MN − 0.5| > 0.3] 6 e−50·0.09 = e−4.5 =
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0.011109. Azuma’s inequality gives double of what Hoeffding’s bound gives. The Central

Limit Theorem gives Pr[SN 6 c] ≈ Φ
(

c−Np

σ
√
N

)

so, Pr[S25 6 19] ≈ Φ
(

19−12.5√
6.25

)

= Φ
(

6.5
2.5

)

=

Φ(2.6) = 0.9953. So, the requested probability is less than 1 − 0.9953 = 0.0047. Using
the De Moivre approximation we can compute directly Pr(S25 = 20) ≈ Φ

(

20.5−12.5
2.5

)

−

Φ
(

19.5−12.5
2.5

)

= Φ(3.2) −Φ(2.8) = 0.9993− 0.9974 = 0.0019.

Example 2 (Lower Bound on Iterations). Assume we have a biased coin which gives rise
to H with probability p and we want to estimate this value within 0.01 with probability at
least 0.9.

The Chebyshev inequality gives Pr[|MN − p| > 0.01] 6 p(1−p)

N(0.01)2
6

104

4N
and we want

that bounded by 1 − 0.9 = 0.1. This gives N = 25, 000. Hoeffding’s bound gives N =

11, 513. In the case of the Central Limit theorem we observe that the variance of MN − p σ2 ↑ ⇒
deviation ↑is p(1 − p)/N 6 1/(4N). Hence, z = ǫ/(1/(2

√
N)) = 2ǫ

√
N. So we get: Pr[|MN − p| >

0.01] ≈ 2Pr[MN − p > 0.01] 6 2(1 −Φ(2 · 0.01 ·
√
N)) 6 0.1. This implies Φ(0.02

√
N) >

0.95 = Φ(1.645) ⇒ 0.02
√
N > 1.645 ⇒ N > (82.25)2 ⇒ N = 6, 766.

5 Markov Chains [MR95]

Definition 5.1 (Markov Chain:). A Markov Chain M is a discrete-time stochastic process
defined over a set of states S in terms of a |S|× |S| matrix P of transition probabilities. The
set S is either finite or countably infinite. M is in only one state at a time. State transitions
occur at time-steps t = 1, 2, . . . . The entry Pij denotes the probability that the next state
will be j, given that M is currently at state i. Note that Pij ∈ [0, 1], ∀i, j ∈ S and

∑
j Pij = 1.

Remark 5.2 (Memorylessness Property:). The next state of M depends only on its current
state.

5.1 Notation and Conventions

Definition 5.3 (t-step transition probability:). We denote as P
(t)
ij = Pr[Xt = j|X0 = i].

Definition 5.4 (First transition into state j at time t:). is denoted by rtij and is given by

r
(t)
ij = Pr[Xt = j, and for 1 6 s 6 t− 1,Xs 6= j | X0 = i].

Definition 5.5 (Transition into state j at some time t > 0:). is denoted by fij and is given

by fij =
∑

t>0 r
(t)
ij .

Definition 5.6 (Expected # of steps to reach j starting from i:). is denoted by hij and is
given by

hij =

{ ∑
t>0 tr

(t)
ij , if fij = 1,

∞ , otherwise.

5.2 Definitions and a theorem

The states of M can be classified as:

Transient: fii < 1 (⇒ hij = ∞).

Persistent: fii = 1. These can be further classified as:

Null persistent: hii = ∞.

Non-null persistent: hii < ∞.

Definition 5.7 (Strong component C:). of a directed graph G, is a maximal subgraph of
G such that there exists a path from i to j and back to i for every pair of vertices i, j ∈ C.
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Final: There is no edge so that we can leave G.

Definition 5.8 (Irreducible Markov chain:). G consists of a single strong component.

Definition 5.9 (State probability vector). q(t) = (q
(t)
1 ,q

(t)
2 , . . . ,q

(t)
n ) → probability that row vector

M is in state i at time t.

Definition 5.10 (Stationary distribution). for M with transition matrix P is a probability
distribution π such that π = πP.

Definition 5.11 (Periodicity T of a state i). guarantees another visit to state i after a+Ti

steps for some i > 0. A state is periodic if T > 1, and aperiodic otherwise. A Markov Chain
M is aperiodic, if every state is aperiodic.

Definition 5.12 (Ergodic state). is one that is aperiodic and non-null persistent.

Definition 5.13 (Ergodic Markov Chain). is one in which all states are ergodic.

Theorem 5.14 (Fundamental Theorem of Markov Chains). Any irreducible, finite, and

aperiodic Markov Chain M has the following properties:

1. All states are ergodic.

2. There is a unique stationary distribution π, such that πi > 0, ∀i ∈ {1, . . . ,n}.

3. For all i ∈ {1, . . . ,n} : fii = 1 and hii =
1
πi

.

4. Let N(i, t) be the number of times M visits state i in t steps.

Then, limt→∞
N(i,t)

t
= πi.

6 A glimpse beyond

Random walks on graphs and expanders, machine learning, random number generators,
parallel computation, probabilistic method.
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A Basic Randomized Algorithmic Schemes

Definition A.1 (Monte Carlo:). Monte Carlo (MC) algorithms exploit randomness in order
to solve problems. The idea is that successive iterations of the core loop of the algorithm
give result(s) which are independent of the previous runs. They can be classified as having
one-sided error, or a two-sided error. For example, assume you have an algorithm A that
decides whether x belongs in a language L, so that the answer we get is:

• x ∈ L ⇒ Pr[A(x) accepts] > p,

• x 6∈ L ⇒ Pr[A(x) accepts] = 0.

This is an example of a one-sided error algorithm. A two-sided error algorithm arises if the
probability of accepting an input x, when in fact x 6∈ L, is non-zero.

Definition A.2 (Las Vegas:). Las Vegas algorithms are Monte Carlo algorithms which
never make a mistake on the result. An example of such an algorithm is quicksort (RandQS).
Note that the running time of the Las Vegas algorithms depends on the input.

B Complexity Classes on Randomized Algorithms

Definition B.1 (Class RP:). RP (Randomized Polynomial time) algorithms are one-sided
error Monte Carlo algorithms, that can err only when x ∈ L. Usually p = 1

2
, but choice is

arbitrary.

Definition B.2 (Class ZPP:). ZPP (Zero-error Probabilistic Polynomial time) algorithms RandQS ∈
ZPPare algorithms that belong in RP ∩ co-RP. Note that Las Vegas algorithms belong in this

class.

Definition B.3 (Class BPP:). BPP (Bounded-error Probabilistic Polynomial time) algo-
rithms are two-sided error Monte Carlo algorithms of the following form:

• x ∈ L ⇒ Pr[A(x) accepts] > 3
4
,

• x 6∈ L ⇒ Pr[A(x) accepts] 6 1
4
.

Definition B.4 (Class RLP:). Class RLP is a subclass of RP, in which the algorithms use
O(lgn) workspace in worst case.

B.1 Categorizing Randomized Complexity Classes

1. P ⊆ RP ⊆ NP.

2. RP ⊆ BPP ⊆ PP.

3. NP ⊆ PP ⊆ PSPACE.
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