Upper Bound on Malicious Noise Rate for PAC Learning

Dimitris Diochnos

Fall 2021

Abstract

Kearns and Li proved in [1, Theorem 1] that the rate tolerated by PAC learning algorithms in the malicious noise model is upper bounded by ε . They did so by using two oracles; one for positive and one for negative examples. This model of PAC learning (with two oracles) was popular at the time. Below we see a proof using just one oracle that returns both positive and negative examples.

Let $\varepsilon \leq 1/2$. Let the concept class \mathcal{C} have at least two concepts c_1 and c_2 such that on two points $u, v \in X$ it holds $c_1(u) = c_2(u)$ and $c_1(v) \neq c_2(v)$; i.e., the concepts c_1 and c_2 agree on one of the instances and disagree on the other one. Now consider the following distribution \mathcal{D} shown below.

	c ₁	c ₂	D
u	1	1	$1-\varepsilon$
ν	1	0	ε

- Any hypothesis that disagrees even in one of these two points, implies that it has error at least ε and thus it is not accepted as a solution satisfying the PAC criterion (with strict inequalities).
- Requiring two such points is meaningful. For example, let u = (1, ..., 1) and v = (1, ..., 1, 0) and the two concepts be $c_1 = x_1 \land x_2 \land ... \land x_{n-1}$ and $c_2 = c_1 \land x_n = x_1 \land x_2 \land ... \land x_{n-1} \land x_n$.

During the course of learning, the adversary presents a point drawn from \mathcal{D} with probability $1 - \eta$. Furthermore, with probability η it returns v with the opposite label. The induced distribution \mathcal{D}' is shown below.

	c ₁	c ₂	D'		
u	1	1	$(1-\eta) \cdot (1-\epsilon) +$	0	$] \leftarrow always return label 1$
ν	1	0	$(1-\eta) \cdot \varepsilon$ +	η	\leftarrow return both labels
			honest label	opposite label	-

If we require now $(1 - \eta)\varepsilon = \eta \Leftrightarrow \eta = \frac{\varepsilon}{1+\varepsilon}$, then it follows that the instance v is returned to the learner with both labels at the same rate $\varepsilon/(1 + \varepsilon)$. However, the same distribution \mathcal{D}' can be obtained when we use c_2 as the target concept and again return the instance v with rate η with opposite label. Therefore, any algorithm that produces an ε -good hypothesis with probability at least $1 - \delta$ when the target is c_1 , then with the same probability must produce an ε -bad hypothesis when the target is c_2 . Hence, the malicious noise rate that can potentially be tolerated is strictly less than $\varepsilon/(1 + \varepsilon)$.

Remark 1. If the adversary has more power of tampering than $\varepsilon/(1+\varepsilon)$, then they can always return an honest example for the excess part of the probability above this threshold and now repeat the above argument.

References

[1] Michael J. Kearns and Ming Li. Learning in the Presence of Malicious Errors. *SIAM Journal on Computing*, 22(4):807–837, 1993.