Computational Learning Theory
Concept Learning and Version Spaces

Dimitris Diochnos
School of Computer Science
University of Oklahoma

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 1/30

.
Outline

@ Concept Learning and Version Spaces

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 2/30

Table of Contents

@ Concept Learning and Version Spaces

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 3/30

Concept Learning and Version Spaces

Version Spaces and Algorithms for Concept Learning

The material is based on the PhD thesis of Tom Mitchell [1]. It shows up as
a separate chapter in Tom Mitchell’s book Machine Learning [2, Ch. 2].

Goal 1 (Concept Learning) J

Exact identification of the target concept c.

That is, given the hypothesis space #, containing functions h: X — {0, 1}
our goal is to achieve:

h(x) = ¢(x), forall x € X.

Inductive Learning Hypothesis.

Any hypothesis h found to approximate well the target function c over a
sufficiently large set of training examples will also approximate well the
target function over unobserved examples.

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 4/30

Example: Enjoy Sport

Example Sky AirTemp Humidity @ Wind Water Forecast EnjoySport
1 Sunny Warm Normal Strong Warm Same Yes
2 Sunny Warm High Strong Warm Same Yes
3 Rainy Cold High Strong Warm Change ~ No
4 Sunny Warm High Strong Cool Change Yes

@ features or attributes

Representation of hypotheses. Conjunction on the instance attributes.
Attribute values:

@ single values (e.g., "Sunny")

@ any value (we use "?"

@ no value (we use "()")

Most General Hypothesis: (?,7,7,7,7,7)
Most Specific Hypothesis: (@, 0,0, 0,0, 0)
Training examples have the form (x, ¢(x)).

Computational Learning Theory

University of Oklahoma

5/30

General-to-Specific Ordering of Hypotheses

Consider these two hypotheses:

hy = (Sunny,? 7 Strong,7,7)
h, = (Sunny,?,72,2.2.7)

What can we say about the instances that are classified as positive by both
h1 and h27
@ Any instance that is classified as positive by hy, will also be classified as
positive by h,
Definition 1

Let h;, hy € H. Then, h; is more-general-than-or-equal-to h; and write
(Vx € X)[(he = 1) = (hj = 1)]

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 6/30

Concept Learning and Version Spaces

General-to-Specific Ordering of Hypotheses (cont’d)

Instances X Hypotheses H

Specific

General

h1= <Sunny, ?, ?, Strong, ?, ?>
h_=<Sunny, ?,2,2,2, 7>

h3= <Sunny, ?, ?, ?, Cool, 7>

X = <Sunny, Warm, High, Strong, Cool, Same>
x2= <Sunny, Warm, High, Light, Warm, Same>

@ Each hypothesis corresponds to some subset of X'. Namely, the subset of instances

that it classifies positive.
@ The arrows connecting hypotheses in H correspond to the more-general-than relation,
with the arrow pointing toward the less general hypothesis.

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 7/30

Partial Ordering on Hypotheses

Partial Ordering.

o Reflexive: (a < a) Hypotheses H
@ Antisymmetric:
(a<b)A(b<a)=a=Db o\ A Specific
° Trazsli)tive: o g \\).\ /.(
(a<bB)A(b<)= (a<))
o \(,; N
@ Some hypotheses ,_)ﬁ/ \\2./4 >
he and h, may be incomparable; o e General
e.g., if they are on the same level. \

(hé Zg hr) A (hr Zg hﬁ)

Total Ordering. Also needs totality: Va, b € X: (a < b) or (b < a).

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 8/30

Concept Learning and Version Spaces

FIND-S: Finding a maximally specific hypothesis

Q: How did the algorithm for learning (monotone, or general) conjunctions
work when we were using equivalence queries?

@ Initialize h to be the most specific hypothesis in H.

@ For every positive training instance x:
o for each attribute constraint a; in h:
o If g; is satisfied by x, do nothing.
@ Otherwise replace a; in h by the next most general constraint that is

satisfied by x.
© Output h.

Questions.
@ Have we converged to the target?
© Why do we prefer the most specific hypothesis?
@ Are the training examples consistent?
@ Severely mislead if they have errors or noise.
© What do we do if there are several maximally specific hypotheses?

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 9/30

Concept Learning and Version Spaces

Example on the Execution of FIND-S

@ Recall the example from Slide 5.

Instances X Hypotheses H
. hy Specific
* ° peci
3 ° h
°
L4 h
2,3
3 s
x5
)
¢ General
> O h ner:
* 3 ~—| 4

X | = <Sunny Warm Normal Strong Warm Same>, +
Xy = <Sunny Warm High Strong Warm Same>, +

x4 = <Rainy Cold High Strong Warm Change>, -
X4= <Sunny Warm High Strong Cool Change>, +

D. Diochnos (OU - CS)

Computational Learning Theory

hy= <@, 3,9,9,93, D>
hl = <Sunny Warm Normal Strong Warm Same>
hy = <Sunny Warm ? Strong Warm Same>

= <Sunny Warm ? Strong Warm Same>

.= <Sunny Warm ? Strong ? ? >

University of Oklahoma

10/30

Concept Learning and Version Spaces

Version Space

Definition 2 (Consistent)

A hypothesis h is consistent with a set of training examples D, iff
h(x) = ¢(x) for each example (x, ¢(x)) in D.

We write Consistent(h, D) to indicate this.

Consistent # Satisfies.
o x satisfies h = h(x) = 1.
@ his consistent with (x, ¢(x)) = h(x) = ¢(x).

Definition 3 (Version Space)
The version space, denoted VSy p, w.r.t. a hypothesis space H and training
examples D, is the subset of hypotheses from H consistent with the

examples in D. In other words,
VSy.p = {h € H | Consistent(h, D)}.

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 11/30

Concept Learning and Version Spaces

LisT-THEN-ELIMINATE Algorithm

LisT-THEN-ELIMINATE Algorithm.
@ List all members in the version space.
@ Eliminate inconsistent.
© Output what is left.

@ Apply the algorithm to the EnjoySport example from Slide 5.

S: | { <Sunny, Warm, ?, Strong, ?, 7>} I

/\

<Sunny, ?, ?, Strong, ?, 7> <Sunny, Warm, ?, 2, 7, 7> <2, Warm, ?, Strong, ?, 7>

NN

G:l {<Sunny, ?, 2,2, 2, 7>, <?, Warm, ?, 2, 2, 2>} J

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 12/30

Concept Learning and Version Spaces

General and Specific Boundary of the Version Space

Definition 4 (General Boundary)

The general boundary G w.r.t. the hypothesis space H and training data
D, is the set of maximally general members of H consistent with D
G = {g € H | Consistent(g, D)\ (Ag' € H)[(g' >4 &) NConsistent(g’, D)]}.

Definition 5 (Specific Boundary)

The specific boundary S w.r.t. the hypothesis space H and training data
D, is the set of minimally general members of H consistent with D
S = {s € M | Consistent(s, D) A (As’ € H)[(s >¢ ') A Consistent(s’, D)]}.

@ might be the case that G and S are not well-defined.

@ e.g., open intervals

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 13/30

Concept Learning and Version Spaces

Version Space Representation Theorem

Theorem 6 (Version Space Representation Theorem)

Let X be an arbitrary set of instances and let H be a set of Boolean-valued
hypotheses defined over X. Let c: X — {0, 1} be an arbitrary target concept
defined over X and let D be an arbitrary set of training examples {(x, c¢(x))}.
Forall X, H, ¢, and D such that S and G are well-defined, we have
VSup={heH | (3se S)(Tg € G)[g =g h >, 5]}

Proof Sketch.
(«<=) h>g s = VY(x4, 1) we have s(x) = 1= h(x4).

& >¢ h=V(x_,0) we have g(x-) = 0= h(x_) = 0.

Therefore, Consistent(h, D) = h € VS, p.

(=) We know that h € VSx p. Now look at all maximal chains that go through h. First look
at specializations. (Similar argument for g € G.)

@ If none is consistent, then h € S.

@ If there is at least one consistent hypothesis, follow that path and do so until we can
no longer specialize further to a consistent hypothesis h'. This last consistent
hypothesis belongs to S. O

v

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 14/30

Concept Learning and Version Spaces

CANDIDATE-ELIMINATION Algorithm

@ The version space representation theorem gives rise to the following
algorithm that maintains only the S and G sets.

Initialize G to the set of maximally general hypotheses in H
Initialize S to the set of maximally specific hypotheses in H
For each training example d, do
o If d is a positive example
e Remove from G any hypothesis inconsistent with d -
o For each hypothesis s in S that is not consistent with d -
¢ Remove s from §
e Add to S all minimal generalizations h of s such that
e h is consistent with d, and some member of G is more general than h
e Remove from § any hypothesis that is more general than another hypothesis in S
e If d is a negative example
e Remove from S any hypothesis inconsistent with d
e For each hypothesis g in G that is not consistent with d
e Remove g from G
e Add to G all minimal specializations 4 of g such that
e h is consistent with d, and some member of S is more specific than &
e Remove from G any hypothesis that is less general than another hypothesis in G

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 15/30

Concept Learning and Version Spaces

Application of the CANDIDATE-ELIMINATION Algorithm

Example Sky AirTemp Humidity @~ Wind Water Forecast EnjoySport
1 Sunny ~ Warm Normal Strong Warm Same Yes
2 Sunny ~ Warm High Strong Warm Same Yes
3 Rainy Cold High Strong Warm Change - No
4 Sunny Warm High Strong Cool Change Yes

G

So=|l<®,®,®,®,®,®>}|

S 1: |(<Sunny, Warm, Normal, Strong, Warm, Same>)I

Sy :l {<Sunny, Warm, ?, Strong, Warm, Same>} l

0%

{

@ After processing the first 2 examples.

Computational Learning Theory

University of Oklahoma

16/30

Concept Learning and Version Spaces

Application of the CANDIDATE-ELIMINATION Algorithm

Example Sky AirTemp Humidity =~ Wind Water Forecast EnjoySport
1 Sunny Warm Normal Strong Warm Same Yes
2 Sunny Warm High Strong Warm Same Yes
3 Rainy Cold High Strong Warm Change - No
4 Sunny Warm High Strong Cool Change Yes

S5, 8 31| (<Sunny, Warm, ?, Strong, Warm, Same>)J

Gy [(<Sunny, 2,2,2,2,7> <2, Warm, 2,2, 2, 7> <2,2, 2,2, ? Same>} j

Gj:

{<2,2,2,22?>}

@ After processing the third example.

Computational Learning Theory

University of Oklahoma

17/30

Concept Learning and Version Spaces

Application of the CANDIDATE-ELIMINATION Algorithm

Example Sky AirTemp Humidity @~ Wind Water Forecast EnjoySport

1 Sunny Warm Normal Strong Warm Same Yes
2 Sunny Warm High Strong Warm Same Yes
3 Rainy Cold High Strong Warm Change - No
4 Sunny Warm High Strong Cool Change Yes

S3: lES'unny, Warm, ?, Strong, Warm, Same>ﬂ

S 4: r { <Sunny, Warm, ?, Strong, ?, 7>} —J

Gy |{<Sunny, 2,20, 7> <2 Warm, 2,2, 7, ?>}|

Gy |{<Sunny, 22,22 7> <l Warm 200,75 <2222, 7, Same>—}|

@ After processing the fourth example.

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 18/30

Concept Learning and Version Spaces

Application of the CANDIDATE-ELIMINATION Algorithm

S4

/\

: |{<Sunny, Warm, ?, Strong, ?, 7>}

<Sunny, ?, ?, Strong, ?, 7> <Sunny, Warm, ?, ?, ?, 7> <?, Warm, ?, Strong, ?, ?>

NSNS

G

4| (<Sunny, 2,2, 2,2, 7>, <?, Warm, ?, ?, 7, 7>}

@ The final version space.

D. Diochnos (OU - CS) Computational Learning Theory

University of Oklahoma

19/30

Concept Learning and Version Spaces

Convergence of the CANDIDATE-ELIMINATION Algorithm

We need:

@ No errors on the training examples.

@ There exists at least one h € H that correctly describes ¢ € C.
(realizability assumption)
@ Target concept c exactly learned when S and G converge to a single
identical hypothesis.

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 20/30

Concept Learning and Version Spaces

What Training Example Should the Learner Request Next?

S 4+ I(<Sunny, Warm, ?, Strong, ?, .7>}|

el

<Sunny, ?, ?, Strong, ?, ?> <Sunny, Warm, ?, ?, ?, ?> <?, Warm, ?, Strong, ?, 7>

N

Gy:| (<Sunny, 2, 2,2, 2, 7>, <?, Warm, 2, 2, 2, 9>}]

What is a good query for our version space above?
@ There are some coordinates where we either have a “?”, or a specific
value. If we specialize such a coordinate to a different value, either the
“?” is correct, or the initial specific value.
Consider the query g = (Rainy. Warm, Normal, Strong, Warm, Same).
o If this is positive, we eliminate 4 hypotheses.
@ If this is negative, we eliminate 2 hypotheses.

Can we do better than that?
Computational Learning Theory University of Oklahoma 21/30

Concept Learning and Version Spaces

What Training Example Should the Learner Request Next?

S4: I(<Sum1y, Warm, ?, Strong, ?, ?>}|

/\

<Sunny, ?, ?, Strong, ?, ?> <Sunny, Warm, ?, ?, ?, ?> <?, Warm, ?, Strong, ?, 7>

N N

{<Sunny, 2, 2, 2, 2, 7>, <?, Warm, ?, ?, ?, 7>}]

A better query for our version space above.
Consider the query ¢’ = (Sunny. Warm. Normal. Light, Warm. Same).

o If this is positive, we eliminate 3 hypotheses.
o If this is negative, again we eliminate 3 hypotheses.

In general, what is a good strategy for creating queries?

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 22/30

Concept Learning and Version Spaces

What Training Example Should the Learner Request Next?

S4: I(<Sum1y, Warm, ?, Strong, ?, .7>]|

/\

<Sunny, ?, ?, Strong, ?, 7> <Sunny, Warm, ?, ?, ?, 7> <?, Warm, ?, Strong, ?, 7>

NSNS

G41F<Sunny, 22,2, 2, 7>, <2, Warm, 2, 2, 7, 7} I :

Optimal Strategy for asking queries.

@ Generate instances that satisfy exactly half of the hypotheses in the
version space.

This results in [log, (|#|)] queries in the worst case.

@ Connected to the HALVING algorithm that is used in online learning.

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 23/30

Concept Learning and Version Spaces

Using Partially Learned Concepts

S4: F<Sunny, Warm, ?, Strong, ?, ?>)I

/\

<Sunny, ?, ?, Strong, ?, ?> <Sunny, Warm, ?, ?, ?, ?> <?, Warm, ?, Strong, ?, ?>

NSNS

4I(<Sunny”77’><’Warm,”’7>

Say we want to classify x; = (Sunny, Warm, Normal, Strong, Cool, Change).
@ Everything that is left classifies this example as positive.

Similarly, x, = (Rainy, Cold, ...) is classified negative.
In other situations we might be split:

® x3 = (Sunny, Warm, Normal, Light, Warm, Same) = (half +, half -)
@ x; = (Sunny, Cold, Normal, Strong, Warm, Same) = (2 say +, 4 say -)

Abstain from predictions: We may say “I don’t know”.
HALVING algorithm: Predict according to the majority vote.

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 24/30

Concept Learning and Version Spaces

Discussion

@ Our goal is to be able to make good predictions on unseen data.

@ In other words, we want to be able to generalize well to unseen data.

There are several issues that one can discuss.
© What if ¢ & H?
@ How does |#| influence generalization?

@ How does |#| influence the number of training examples that are
needed/sufficient for our purposes? (PAC Learning)

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 25/30

Concept Learning and Version Spaces

Discussion: ¢ € H can be an issue...

@ ¢ ¢ H can easily be a real issue:

Example Sky AirTemp Humidity =~ Wind

Water Forecast EnjoySport
1 Sunny Warm Normal Strong Cool Change Yes
2 Cloudy Warm Normal Strong Cool Change Yes
3 Rainy Warm Normal Strong Cool Change No

If we use conjunctions (like earlier), then the most specific hypothesis that
is consistent with the first two examples is:

h = (?, Warm, Normal, Strong, Cool, Change)

@ This function is for the problem at hand!
@ The third example is classified as positive, whereas it is negative.

One idea: Make the hypothesis space more expressive.

@ For example, allow any (Boolean) function in the hypothesis space.
¢ This solution comes with drawbacks....

D. Diochnos (OU - CS) Computational Learning Theory

University of Oklahoma 26/30

Concept Learning and Version Spaces

Discussion: Allowing any function in H has issues...

Say the learner sees the positive examples xq, x5, x3, and the negative
examples x4, x5. Then,

S={(x1Vx2Vx3)}
G={"(xaVx)}

@ We can only predict correctly on instances that we have seen before.

o Trying to take the majority vote on instances that we have not seen
before, gives a 50-50 score!

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 27/30

Concept Learning and Version Spaces

Bias-Free Learning is Futile

A learner that makes no a priori assumptions regarding the identity of the
target concept has no rational basis for classifying any unseen instances.

The CANDIDATE-ELIMINATION algorithm was able to generalize to unseen
examples based on the assumption that the target concept could be
represented as a conjunction of attribute values.

More generally:

@ What rules/policy does the learner follow in order to generalize beyond
the training data?

@ It is useful to know the inductive bias that different learning algorithms
have.

@ What kind of assumptions are needed, so that we can deduce the label

that an algorithm gives to an instance x, given a particular training set
D?

@ That is called the inductive bias.

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 28/30

Concept Learning and Version Spaces

Inductive Bias

Definition 7 (Inductive Bias)

Consider a concept learning algorithm L for the set of instances X. Let ¢ be
an arbitrary concept defined over X, and let D, = {(x, ¢(x))} be an
arbitrary set of training examples of c. Let L(x;, D.) denote the classification
assigned to the instance x; by L after training on the data D.. The
inductive bias of L is any minimal set of assertions B such that for any
target concept ¢ and corresponding training examples D,

(Vxi € X)[(BA D¢ A xi) F L(xi, De)]

v

ROTE-LEARNER: (Abstains to predict on previously unseen instances)

CANDIDATE-ELIMINATION: (All members of the version space agree on
the prediction, otherwise abstains.)

FiND-S: moreover all the
opposite is entailed by other knowledge. (Never abstains)

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 29/30

Concept Learning and Version Spaces

References

[1] Tom M. Mitchell. Version spaces: An approach to concept learning. PhD
thesis, Electrical Engineering Dept., Stanford University, Stanford, CA,
1979.

[2] Tom M. Mitchell. Machine Learning. McGraw-Hill, New York, 1997.

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 30/30

	Concept Learning and Version Spaces
	References

