
Computational Learning Theory

Concept Learning and Version Spaces

Dimitris Diochnos
School of Computer Science
University of Oklahoma

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 1 / 30

Outline

1 Concept Learning and Version Spaces

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 2 / 30

Concept Learning and Version Spaces

Table of Contents

1 Concept Learning and Version Spaces

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 3 / 30

Concept Learning and Version Spaces

Version Spaces and Algorithms for Concept Learning

The material is based on the PhD thesis of Tom Mitchell [1]. It shows up as

a separate chapter in Tom Mitchell’s book Machine Learning [2, Ch. 2].

Goal 1 (Concept Learning)

Exact identification of the target concept c.

That is, given the hypothesis spaceH, containing functions h : X → {0, 1}
our goal is to achieve:

h(x) = c(x), for all x ∈ X .

Inductive Learning Hypothesis.

Any hypothesis h found to approximate well the target function c over a

sufficiently large set of training examples will also approximate well the

target function over unobserved examples.

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 4 / 30

Concept Learning and Version Spaces

Example: Enjoy Sport

features or a�ributes

Representation of hypotheses. Conjunction on the instance a�ributes.

A�ribute values:

single values (e.g., "Sunny")

any value (we use "?")

no value (we use "∅")

Most General Hypothesis: 〈?, ?, ?, ?, ?, ?〉

Most Specific Hypothesis: 〈∅, ∅, ∅, ∅, ∅, ∅〉

Training examples have the form (x, c(x)).
D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 5 / 30

Concept Learning and Version Spaces

General-to-Specific Ordering of Hypotheses

Consider these two hypotheses:

h1 = 〈Sunny, ?, ?, Strong, ?, ?〉
h2 = 〈Sunny, ?, ?, ?, ?, ?〉

What can we say about the instances that are classified as positive by both

h1 and h2?

Any instance that is classified as positive by h1, will also be classified as

positive by h2

Definition 1

Let hj, hk ∈ H. Then, hj ismore-general-than-or-equal-to hk and write

hj ≥g hk iff

(∀x ∈ X)[(hk = 1) =⇒ (hj = 1)]

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 6 / 30

Concept Learning and Version Spaces

General-to-Specific Ordering of Hypotheses (cont’d)

Each hypothesis corresponds to some subset of X . Namely, the subset of instances
that it classifies positive.

The arrows connecting hypotheses in H correspond to the more-general-than relation,
with the arrow pointing toward the less general hypothesis.

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 7 / 30

Concept Learning and Version Spaces

Partial Ordering on Hypotheses

Partial Ordering.

Reflexive: (a ≤ a)

Antisymmetric:

(a ≤ b) ∧ (b ≤ a) ⇒ a = b

Transitive:

(a ≤ b) ∧ (b ≤ c) ⇒ (a ≤ c)

Some hypotheses

hℓ and hr may be incomparable;

e.g., if they are on the same level.

(hℓ ≥g hr) ∧ (hr ≥g hℓ)

Total Ordering. Also needs totality: ∀a, b ∈ X : (a ≤ b) or (b ≤ a).

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 8 / 30

Concept Learning and Version Spaces

Find-S: Finding a maximally specific hypothesis

Q: How did the algorithm for learning (monotone, or general) conjunctions

work when we were using equivalence queries?

1 Initialize h to be the most specific hypothesis in H.
2 For every positive training instance x :

for each a�ribute constraint ai in h:
If ai is satisfied by x , do nothing.
Otherwise replace ai in h by the next most general constraint that is
satisfied by x .

3 Output h.

�estions.
1 Have we converged to the target?
2 Why do we prefer the most specific hypothesis?
3 Are the training examples consistent?

Severely mislead if they have errors or noise.
4 What do we do if there are several maximally specific hypotheses?

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 9 / 30

Concept Learning and Version Spaces

Example on the Execution of Find-S

Recall the example from Slide 5.

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 10 / 30

Concept Learning and Version Spaces

Version Space

Definition 2 (Consistent)

A hypothesis h is consistent with a set of training examples D, iff

h(x) = c(x) for each example (x, c(x)) in D.

We write Consistent(h,D) to indicate this.

Consistent 6= Satisfies.

x satisfies h⇒ h(x) = 1.

h is consistent with (x, c(x)) ⇒ h(x) = c(x).

Definition 3 (Version Space)

The version space, denoted VSH,D , w.r.t. a hypothesis spaceH and training

examples D, is the subset of hypotheses fromH consistent with the

examples in D. In other words,

VSH,D = {h ∈ H | Consistent(h,D)}.

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 11 / 30

Concept Learning and Version Spaces

List-then-Eliminate Algorithm

List-then-Eliminate Algorithm.

1 List all members in the version space.
2 Eliminate inconsistent.
3 Output what is le�.

Apply the algorithm to the EnjoySport example from Slide 5.

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 12 / 30

Concept Learning and Version Spaces

General and Specific Boundary of the Version Space

Definition 4 (General Boundary)

The general boundary G w.r.t. the hypothesis space H and training data

D, is the set of maximally general members ofH consistent with D

G ≡ {g ∈ H | Consistent(g,D)∧(6 ∃g′ ∈ H)[(g′ >g g)∧Consistent(g′,D)]}.

Definition 5 (Specific Boundary)

The specific boundary S w.r.t. the hypothesis spaceH and training data

D, is the set of minimally general members ofH consistent with D

S ≡ {s ∈ H | Consistent(s,D)∧ (6 ∃s′ ∈ H)[(s >g s
′)∧Consistent(s′,D)]}.

might be the case that G and S are not well-defined.

e.g., open intervals

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 13 / 30

Concept Learning and Version Spaces

Version Space Representation Theorem

Theorem 6 (Version Space Representation Theorem)

Let X be an arbitrary set of instances and letH be a set of Boolean-valued

hypotheses defined over X . Let c : X → {0, 1} be an arbitrary target concept

defined over X and let D be an arbitrary set of training examples {(x, c(x))}.
For all X , H, c, and D such that S and G are well-defined, we have

VSH,D ≡ {h ∈ H | (∃s ∈ S)(∃g ∈ G)[g ≥g h ≥g s]}.

Proof Sketch.

(⇐) h ≥g s ⇒ ∀(x+, 1) we have s(x+) = 1 = h(x+).
g ≥g h ⇒ ∀(x−, 0) we have g(x−) = 0 ⇒ h(x−) = 0.
Therefore, Consistent(h,D) ⇒ h ∈ VSH,D .

(⇒)We know that h ∈ VSH,D . Now look at all maximal chains that go through h. First look
at specializations. (Similar argument for g ∈ G.)

If none is consistent, then h ∈ S.

If there is at least one consistent hypothesis, follow that path and do so until we can
no longer specialize further to a consistent hypothesis h′. This last consistent
hypothesis belongs to S.

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 14 / 30

Concept Learning and Version Spaces

Candidate-Elimination Algorithm

The version space representation theorem gives rise to the following

algorithm that maintains only the S and G sets.

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 15 / 30

Concept Learning and Version Spaces

Application of the Candidate-Elimination Algorithm

A�er processing the first 2 examples.

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 16 / 30

Concept Learning and Version Spaces

Application of the Candidate-Elimination Algorithm

A�er processing the third example.

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 17 / 30

Concept Learning and Version Spaces

Application of the Candidate-Elimination Algorithm

A�er processing the fourth example.

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 18 / 30

Concept Learning and Version Spaces

Application of the Candidate-Elimination Algorithm

The final version space.

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 19 / 30

Concept Learning and Version Spaces

Convergence of the Candidate-Elimination Algorithm

We need:

1 No errors on the training examples.
2 There exists at least one h ∈ H that correctly describes c ∈ C.

(realizability assumption)

Target concept c exactly learned when S and G converge to a single
identical hypothesis.

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 20 / 30

Concept Learning and Version Spaces

What Training Example Should the Learner Request Next?

What is a good query for our version space above?

There are some coordinates where we either have a “?”, or a specific

value. If we specialize such a coordinate to a different value, either the

“?” is correct, or the initial specific value.

Consider the query q = (Rainy,Warm,Normal, Strong,Warm, Same).

If this is positive, we eliminate 4 hypotheses.

If this is negative, we eliminate 2 hypotheses.

Can we do be�er than that?
D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 21 / 30

Concept Learning and Version Spaces

What Training Example Should the Learner Request Next?

A be�er query for our version space above.

Consider the query q′ = (Sunny,Warm,Normal, Light,Warm, Same).

If this is positive, we eliminate 3 hypotheses.

If this is negative, again we eliminate 3 hypotheses.

In general, what is a good strategy for creating queries?

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 22 / 30

Concept Learning and Version Spaces

What Training Example Should the Learner Request Next?

Optimal Strategy for asking queries.

Generate instances that satisfy exactly half of the hypotheses in the

version space.

This results in ⌈log2 (|H|)⌉ queries in the worst case.

Connected to the Halving algorithm that is used in online learning.

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 23 / 30

Concept Learning and Version Spaces

Using Partially Learned Concepts

Say we want to classify x1 = (Sunny, Warm, Normal, Strong, Cool, Change).

Everything that is le� classifies this example as positive.

Similarly, x2 = (Rainy, Cold, ...) is classified negative.

In other situations we might be split:

x3 = (Sunny, Warm, Normal, Light, Warm, Same) ⇒ (half +, half -)

x4 = (Sunny, Cold, Normal, Strong, Warm, Same) ⇒ (2 say +, 4 say -)

Abstain from predictions: We may say “I don’t know”.

Halving algorithm: Predict according to the majority vote.

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 24 / 30

Concept Learning and Version Spaces

Discussion

Our goal is to be able to make good predictions on unseen data.

In other words, we want to be able to generalize well to unseen data.

There are several issues that one can discuss.

What if c 6∈ H?

How does |H| influence generalization?

How does |H| influence the number of training examples that are

needed/sufficient for our purposes? (PAC Learning)

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 25 / 30

Concept Learning and Version Spaces

Discussion: c 6∈ H can be an issue...

c 6∈ H can easily be a real issue:

If we use conjunctions (like earlier), then the most specific hypothesis that

is consistent with the first two examples is:

h = (?, Warm, Normal, Strong, Cool, Change)

This function is already overly general for the problem at hand!

The third example is classified as positive, whereas it is negative.

One idea: Make the hypothesis space more expressive.

For example, allow any (Boolean) function in the hypothesis space.

This solution comes with drawbacks....

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 26 / 30

Concept Learning and Version Spaces

Discussion: Allowing any function in H has issues...

Say the learner sees the positive examples x1, x2, x3, and the negative

examples x4, x5. Then,

S = {(x1 ∨ x2 ∨ x3)}
G = {¬(x4 ∨ x5)}

We can only predict correctly on instances that we have seen before.

Trying to take the majority vote on instances that we have not seen

before, gives a 50-50 score!

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 27 / 30

Concept Learning and Version Spaces

Bias-Free Learning is Futile

A learner that makes no a priori assumptions regarding the identity of the

target concept has no rational basis for classifying any unseen instances.

The Candidate-Elimination algorithm was able to generalize to unseen

examples based on the assumption that the target concept could be

represented as a conjunction of a�ribute values.

More generally:

What rules/policy does the learner follow in order to generalize beyond
the training data?

It is useful to know the inductive bias that different learning algorithms
have.

What kind of assumptions are needed, so that we can deduce the label
that an algorithm gives to an instance x , given a particular training set
D?

That is called the inductive bias.

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 28 / 30

Concept Learning and Version Spaces

Inductive Bias

Definition 7 (Inductive Bias)

Consider a concept learning algorithm L for the set of instances X . Let c be

an arbitrary concept defined over X , and let Dc = {(x, c(x))} be an
arbitrary set of training examples of c. Let L(xi,Dc) denote the classification
assigned to the instance xi by L a�er training on the data Dc . The

inductive bias of L is any minimal set of assertions B such that for any

target concept c and corresponding training examples Dc

(∀xi ∈ X)[(B ∧ Dc ∧ xi) ⊢ L(xi,Dc)]

Rote-Learner: No bias (Abstains to predict on previously unseen instances)

Candidate-Elimination: c ∈ H (All members of the version space agree on

the prediction, otherwise abstains.)

Find-S: c ∈ H and moreover all instances are negative unless the

opposite is entailed by other knowledge. (Never abstains)

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 29 / 30

Concept Learning and Version Spaces

References

[1] Tom M. Mitchell. Version spaces: An approach to concept learning. PhD

thesis, Electrical Engineering Dept., Stanford University, Stanford, CA,

1979.

[2] Tom M. Mitchell. Machine Learning. McGraw-Hill, New York, 1997.

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 30 / 30

	Concept Learning and Version Spaces
	References

