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Learning Concepts using �eries

The material is based on Angluin’s work [1].

Want complete identification of a target concept c ∈ C.

No probability distribution on instances.
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Types of �eries

Membership: Ask if x ∈ X belongs to c.

YES, if x ∈ c. Otherwise, NO.

Equivalence: Ask if h = c.

YES if h = c; o/w NO and also return an x ′ ∈ h△ c.

Subset: Ask if h ⊆ c.

YES if h ⊆ c; o/w NO and also return an x ′ ∈ h \ c.

Superset: Ask if h ⊇ c.

YES if h ⊇ c; o/w NO and also return an x ′ ∈ c \ h.

Disjointness: Ask if h ∩ c = ∅.

YES if h ∩ c = ∅; o/w NO and also return an x ′ ∈ h ∩ c.

Exhaustiveness: Ask if h ∪ c = X .

YES if h ∪ c = X ; o/w NO and also return an x ′ 6∈ h ∪ c.

Restricted queries when the answer is YES/NO, but no

counterexample is provided.
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Learning Monotone Conjunctions

Membership �eries.

xones = (1, 1, 1, . . . , 1, 1, 1) is a true (positive) point for every monotone

conjunction.

For i ∈ {1, . . . , n} ask all the instances xi that differ from xones in

position i only.

xones = (1, 1, 1, . . . , 1, 1, 1)
x1 = (0, 1, 1, . . . , 1, 1, 1)
x2 = (1, 0, 1, . . . , 1, 1, 1)
...

...

xn−1 = (1, 1, 1, . . . , 1, 0, 1)
xn = (1, 1, 1, . . . , 1, 1, 0)

If the answer is NO to xi , then the i-th variable is relevant to the target.

A�er exactly n membership queries we identify the target precisely.

(the whole process runs in polynomial time⇒ it is efficient)
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Learning Monotone Conjunctions

Equivalence �eries.

1 Initialize h = x1 ∧ x2 ∧ . . . ∧ xn.

2 If h is the target c, we are done.

3 Otherwise, we get a counterexample x ∈ h△ c. How does x look like?

h is satisfied only at xones = (1, 1, 1, . . . , 1, 1, 1)
(xones satisfies any monotone conjunction)
Therefore, for any counterexample x that we will obtain:

x must be different from xones ⇒ x contains at least one 0, and

x has to satisfy c.

As a consequence, the bits that are 0 in the counterexample x that we

obtained, must correspond to variables that are not in the target c.

=⇒ Update our guess for h by removing those variables from h for

which we had a 0 in x . Then, go back to Step 2 and repeat similar

arguments for the counterexamples obtained.

The algorithm makes at most n+ 1 queries.

(the whole process runs in polynomial time⇒ it is efficient)

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 7 / 13



�ery Learning

Learning General Conjunctions

Equivalence �eries.

1 First query for the identically false conjunction; e.g., h0 = x1 ∧ x1.

2 If h0 is the target c, we are done.

3 Otherwise, we obtain a positive counterexample x .
What can we infer from x?

x dictates the orientation of the variables in the target conjunction.

For example, if the i-th bit in x is a 0, then this implies that either variable

xi does not occur at all, or it occurs in the form of xi ; it can not be the case

that xi appears as is in the target concept c.

4 From the previous step we have the starting hypothesis h1, which is

the full conjunction that satisfies the counterexample x that was

returned. From this point and on we repeat the process that we

followed earlier (for monotone conjunctions) until we determine the

target concept precisely.

(the whole process runs in polynomial time ⇒ it is efficient)
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Learning General Conjunctions

Membership �eries.

The previous algorithm does not generalize to general conjunctions.

Reason: Lack of a starting truth assignment similar to xones that is

positive for all the functions in the class.

Adversary’s Idea: As long as we have not asked all 2n possible truth
assignments, it is possible that:

c is satisfied by some unasked vector, or

c is identically false.

Negative Result. In order to learn an n-variable conjunction, one has to

ask 2n membership queries in the worst case.

... and this is true, regardless of the running time of the algorithm that

updates the hypotheses ...
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General Lower-Bound Techniques

Lemma 1 (Sunflower Lemma [1])

Suppose the hypothesis spaceH contains a class of distinct sets L1, . . . , Ln and

a set L∩ such that for any pair of distinct indices i and j we have: Li ∩ Lj = L∩.

(H contains n+ 1 hypotheses.) Then, for any algorithm that exactly identifies

each of the hypotheses Li using restricted equivalence, membership, and subset

queries, must make at least n− 1 queries in the worst case.

– figure –
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General Lower-Bound Techniques (cont’d)

Lemma 2 (Sunflower Lemma [1])

Suppose the hypothesis spaceH contains a class of distinct sets L1, . . . , Ln and

a set L∩ such that for any pair of distinct indices i and j we have: Li ∩ Lj = L∩.

(H contains n+ 1 hypotheses.) Then, for any algorithm that exactly identifies

each of the hypotheses Li using restricted equivalence, membership, and subset

queries, must make at least n− 1 queries in the worst case.

Proof.

Restricted EQs. Response is NO for a query on L and at most one Li = L is

eliminated.

Membership �eries. If x ∈ L∩, answer YES. Otherwise, answer NO⇒ remove

at most one Li .

Subset �eries. If L ⊆ L∩, answer YES. Otherwise, answer NO and any element

in L \ L∩ is selected as the counterexample ⇒ At most one Li is eliminated.
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General Lower-Bound Techniques (cont’d)

Theorem 3 (Double Sunflower [1])

Let X = {x1, . . . , xN , y1, . . . , yN , z1, z2}; that is, |X | = 2N + 2. Also, for

i ∈ {1, . . . ,N}, let ci = {z1, xi} ∪ {y1, . . . , yi−1, yi+1, . . . , yN}; that is,
|C| = N. Then, no ma�er which type of queries we use, we need N − 1 queries

in order to identify any ci ∈ C.

Proof.

Equivalence �eries. When we ask cj the answer is NO and xj is returned

as the counterexample. ⇒ Removes at most 1 hypothesis (h = cj)

Membership �eries. When we ask xj , the answer is NO ⇒ Removes at

most 1 hypothesis (h = cj)

When we ask yj , the answer is yes⇒ Removes at most 1 hypothesis (h = cj)

When we ask z1, the answer is YES⇒ No removals

When we ask z2 , the answer is NO⇒ No removals

Other Types of �eries. The paper discusses those in Section 6.
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