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Perceptrons

Our discussion is based on Tom Mitchell’s book [1, Ch. 4].

Simplest form of a neural network.

With a slight modification it can be the building block of traditional

neural networks, as it can represent a single neuron.

On input ~x = (x1, x2, . . . , xn) the perceptron computes

o(~x) =

{

1 if w0 + w1x1 + w2x2 + . . .wnxn > 0

−1 otherwise

The wi’s are the weights that determine the contribution of each input

xi to the output

In other words, the quantity (−w0) is a threshold that the weighted

sum
∑n

i=1 wixi must exceed in order for the perceptron to output 1.

It is convenient to add an extra coordinate x0 = 1 in the input vector, so

that we can write the test as
∑n

i=0 wixi
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Perceptrons (cont’d)

With this last modification (adding x0 = 1), we can also write down the

output more compactly:

o(~x) = sgn(~w · ~x) ,

where

sgn(z) =

{

1 if z > 0

−1 otherwise

Schematically.

Hypothesis SpaceH.
H = {~w : ~w ∈ R

n+1}
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Representational Power of Perceptrons

Decision Boundary

Recall that we compute o(~x) = sgn (~w · ~x) = sgn
(∑n

i=0 wixi
)

The decision boundary is a hyperplane in an n-dimensional space.

The perceptron outputs +1 for instances that lie on one side of the

decision boundary and -1 for instances that lie on the other side of the

decision boundary (or in the extreme case, also for instances that lie

exactly on top of the decision boundary).

The equation of the decision boundary is ~w · ~x = 0.

Adding the weight w0 into the equation allows us to create
hyperplanes that are not necessarily homogeneous.

A homogeneous hyperplane is one that goes through the origin of axes.
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Representational Power of Perceptrons (cont’d)

We can represent many Boolean functions such as AND, OR, NAND (¬
AND), NOR (¬ OR).

For example, we can represent the AND function of two variables using

w0 = −0.8 and w1 = w2 = 0.5.

We can represent the OR function using w0 = −0.3 and w1 = w2 = 0.5

In general, we can represent m-of-n functions (functions where at least

m of the n inputs must be true) by se�ing all the weights equal to 0.5

and then se�ing the threshold w0 accordingly.

However, we cannot represent the XOR function.
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The Perceptron Training Rule

Typically initialize weights to random values in the [−1, 1] interval.

We update the hypothesis every time we make a mistake.

wi ← wi + η(t − o)xi
︸ ︷︷ ︸

∆wi

η: learning rate

t : target output (±1)

o: output generated by the perceptron (±1)

xi : the value of the i-th coordinate of the input x .
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Why Does the Perceptron Update Rule Make Sense?

Perceptron Update Rule.

wi ← wi + η(t − o)xi
︸ ︷︷ ︸

∆wi

Why does this update rule make sense?

Correct classification =⇒ No changes on the weights.
Perceptron predicts o = −1 when t = +1⇒ (t − o) = 2 > 0⇒ if xi > 0
then wi increases, otherwise if xi < 0 then wi decreases.

The weights change in a direction so that we can increase the product

~w · ~x and make it closer to predicting a positive value.

If you prefer, it is as if we try to associate a positive weight to the xi’s

that are positive and negative weight to the xi’s that are negative.

Example 1

Assume that xi = 0.8,η = 0.1, t = 1, o = −1. Then:
∆wi = η(t − o)xi = 0.1(1− (−1))0.8 = 0.16. In other words, the weight will

increase in this case.

On the other hand, if xi was negative, the associated weight would decrease.
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