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Learning with Perceptrons

Perceptrons

@ Our discussion is based on Tom Mitchell’s book [1, Ch. 4].

@ Simplest form of a neural network.
@ With a slight modification it can be the building block of traditional
neural networks, as it can represent a single neuron.
On input the perceptron computes

. T ifwyp+wixg+woxa+...Wpx, >0
o(xX) = .
—1 otherwise

@ The w;’s are the weights that determine the contribution of each input
x;j to the output

@ In other words, the quantity (—wy) is a threshold that the weighted
sum > 7, w;x; must exceed in order for the perceptron to output 1.

@ It is convenient to add an extra coordinate x; = 1 in the input vector, so
that we can write the test as >, w;x;
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Perceptrons (cont’d)

o With this last modification (adding xo = 1), we can also write down the
output more compactly:

o(x) = sgn(w - X),

where

sgn(z) = 1 ifz>0

8MZ) =9 1 otherwise
Schematically.

{1if)'fwix,.>o
0= =)
-1 otherwise

Hypothesis Space H.

- = n+1
H={w: weR"}
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Representational Power of Perceptrons

Decision Boundary
@ Recall that we compute o(X) = sgn(w - X) = sgn (37, wix;)
@ The decision boundary is a hyperplane in an n-dimensional space.

@ The perceptron outputs +1 for instances that lie on one side of the
decision boundary and -1 for instances that lie on the other side of the
decision boundary (or in the extreme case, also for instances that lie
exactly on top of the decision boundary).

(]

The equation of the decision boundary is w - X = 0.

Adding the weight w; into the equation allows us to create
hyperplanes that are not necessarily homogeneous.

@ A homogeneous hyperplane is one that goes through the origin of axes.

(4
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Representational Power of Perceptrons (cont’d)

@ We can represent many Boolean functions such as AND, OR, NAND (—
AND), NOR (= OR).

@ For example, we can represent the AND function of two variables using
wy = —0.8 and wy = w, = 0.5.

@ We can represent the OR function using wy = —0.3 and wy = w, = 0.5

@ In general, we can represent m-of-n functions (functions where at least
m of the n inputs must be true) by setting all the weights equal to 0.5
and then setting the threshold wy accordingly.

@ However, we cannot represent the XOR function.

®)
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The Perceptron Training Rule

(4

Typically initialize weights to random values in the [—1, 1] interval.

®

We update the hypothesis every time we make a mistake.

w; < w; +1n(t — 0)x;
——
Aw;j
@ 1: learning rate
@ t: target output (£1)
@ o: output generated by the perceptron (£1)
°

x;j: the value of the i-th coordinate of the input x.
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Why Does the Perceptron Update Rule Make Sense?
Perceptron Update Rule.
w; < w; +1(t — 0)x;
Aw;

Why does this update rule make sense?

@ Correct classification = No changes on the weights.
@ Perceptron predicts o= —1whent=+1=(t—0)=2>0=ifx; >0
then w; increases, otherwise if x; < 0 then w; decreases.
@ The weights change in a direction so that we can increase the product
w - X and make it closer to predicting a positive value.
o If you prefer, it is as if we try to associate a positive weight to the x;’s
that are positive and negative weight to the x;’s that are negative.

Example 1

Assume that x; = 0.8,n1=0.1,t=1,0= —1. Then:

Aw; =n(t — 0)x; = 0.1(1 — (—1))0.8 = 0.16. In other words, the weight will
increase in this case.

On the other hand, if x; was negative, the associated weight would decrease.
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