
Computational Learning Theory

Probably Approximately Correct (PAC) Learning

Dimitris Diochnos
School of Computer Science
University of Oklahoma

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 1 / 94



Outline

1 Probably Approximately Correct (PAC) Learning

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 2 / 94



Probably Approximately Correct (PAC) Learning

Table of Contents

1 Probably Approximately Correct (PAC) Learning

Introduction and Motivation

Definitions

Preliminary Examples

Finite Hypothesis Spaces and Empirical Risk Minimization

Intractability in Learning

Improper Learning to Overcome Intractability

VC Dimension and Sample Complexity Bounds

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 3 / 94



Probably Approximately Correct (PAC) Learning Introduction and Motivation

Probably Approximately Correct (PAC) Learning

PAC learning was introduced by Leslie Valiant in 1984 [12].

Received the Turing award (highest distinction in Computer Science)
in 2010 because of several contributions, including PAC learning.
Wikipedia entry on Leslie Valiant

To this day, the majority of provable results in machine learning is

related to this model.

Several good resources on the topic.

Tom Mitchell has a good brief description in a chapter devoted to
computational learning theory in his book [8, Ch. 7].
An Introduction to Computational Learning Theory [7].
Foundations of Machine Learning [9].
Understanding Machine Learning - From Theory to Algorithms [11].
Certainly more books that I forget at the moment...

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 4 / 94

https://en.wikipedia.org/wiki/Leslie_Valiant


Probably Approximately Correct (PAC) Learning Introduction and Motivation

Reminder: (True) Risk and Empirical Risk

Definition 1 (Risk)

Given a hypothesis h ∈ H, a target concept c ∈ C, and an underlying

distribution D, the risk of h is defined by

RD (h, c) = Prx∼D (h(x) 6= c(x)) = Ex∼D [1 {h(x) 6= c(x)}] .

1 {A} returns 1 if the event A holds, o.w. returns 0.

Definition 2 (Empirical Risk)

Given a hypothesis h ∈ H, a target concept c ∈ C, and a sample

S = (x1, . . . , xm), the empirical risk of h is defined by

R̂S (h, c) =
1

m
·

m∑

i=1

1 {h(xi) 6= c(xi)} .

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 5 / 94



Probably Approximately Correct (PAC) Learning Introduction and Motivation

Motivating our Discussion on PAC Learning

Overfi�ing happens because the empirical risk is a bad estimate of the

true risk.

Q: Can we infer something about the true risk (generalization error)

from the empirical risk (training error)?

Overfi�ing happens when the learner doesn’t see “enough” examples.

Q: Can we estimate how many examples are enough?

On a related note:

Q: Can we estimate how many examples are necessary?

Other Related �estions

In general, what kind of concepts are easy or hard to learn?

Which algorithm will we use to process the examples?

Does it ma�er which algorithm we select?

How frequently will our solution make mistakes during prediction?

How confident are we about such a claim?

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 6 / 94



Probably Approximately Correct (PAC) Learning Introduction and Motivation

The Main Goal of PAC Learning

Find a good approximation of a function with high probability

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 7 / 94



Probably Approximately Correct (PAC) Learning Introduction and Motivation

At the End of the Day

Find a good approximation of a function with high probability

Two�estions Need to Be Resolved

1 Statistical. How many examples are sufficient (or necessary)?

2 Computational. Algorithm that solves the problem efficiently?

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 8 / 94



Probably Approximately Correct (PAC) Learning Definitions

Basic Terminology for PAC Learning

Goal (Good Approximation with High Probability)

There is a function c over a space X . One wants to come up (in a reasonable

amount of time) with a function h such that h is a good approximation of c

with high probability.

Description 1 (Parameters and Terminology)

X : Instance Space (say, {0, 1}n) Y : Labels (say, {+,−})

c ∈ C: Target concept belonging to a concept class

h ∈ H: Hypothesis belonging to a hypothesis class

Good Approximation: Small Risk (Error) ε

High Probability: Confidence 1− δ

Reasonable Amount of Time: Polynomial w.r.t. input parameters

Realizability assumption: (∀c ∈ C)(∃h ∈ H)(∀x ∈ X ) [h(x) = c(x)]
(H is at least as expressive as C; we will see examples later)

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 9 / 94



Probably Approximately Correct (PAC) Learning Definitions

PAC Learning

Definition 3 (PAC Learning)

A concept class C is said to be PAC-learnable if there exists an algorithm A
and a polynomial function poly(·, ·, ·, ·) such that for any ε > 0 and δ > 0,

for all distributions D on X and for any target concept c ∈ C, the following
holds for any sample size m ≥ poly(1/ε, 1/δ, n, size(c)):

PrS∼Dm (RD (h, c) ≤ ε) ≥ 1− δ

If A further runs in poly(1/ε, 1/δ, n, size(c)), then C is said to be efficiently

PAC-learnable. When such an algorithm A exists, it is called a

PAC-learning algorithm for C.

size(c) denotes the maximal cost for the representation of c ∈ C.
Example: Representing a monotone conjunction as a list of the k

variables that pose the constraints, takes space O (k log n).

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 10 / 94



Probably Approximately Correct (PAC) Learning Definitions

PAC Learning (Summary)

There is an arbitrary, unknown distribution D over X .

Learn from poly
(
1
ε ,

1
δ

)
many examples (x, c(x)), where x ∼ D.

The risk is defined as RD (h, c) = Prx∼D (h (x) 6= c (x)).

c h

X

Goal 1 (PAC Criterion)

PrS∼Dm (RD (h, c) ≤ ε) ≥ 1− δ .

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 11 / 94



Probably Approximately Correct (PAC) Learning Definitions

Agnostic PAC Learning

Definition 4 (Agnostic PAC Learning)

Let H be a hypothesis space. Algorithm A is an agnostic PAC-learning

algorithm if there exists a polynomial function poly(·, ·, ·, ·) such that for

any ε > 0, δ > 0, for all distributions D over X × Y , the following holds for

any sample size m ≥ poly(1/ε, 1/δ, n, size(c)):

PrS∼Dm

(
RD (h, c) ≤ min

h⋆∈H
{RD (h⋆, c)} + ε

)
≥ 1− δ

If A further runs in poly(1/ε, 1/δ, n, size(c)), then it is said to be an

efficient agnostic PAC-learning algorithm.

Remark 1

We have a more general scenario (stochastic) since D is defined on X × Y .

(The label of the point is not unique.)

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 12 / 94



Probably Approximately Correct (PAC) Learning Preliminary Examples

Example: PAC Learning Axis-Aligned Rectangles

x

y

R

+
+

+

+
–

–

–

–

Problem. We want to learn an unknown rectangle R in the Euclidean plane

R
2 whose sides are parallel to the coordinate axes.

Information. Points p ∈ R
2 drawn from some fixed probability distribution

D over R2 together with their labels.

+: point contained in R

–: point not contained in R

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 13 / 94



Probably Approximately Correct (PAC) Learning Preliminary Examples

Example: PAC Learning Axis-Aligned Rectangles (cont’d)

x

y

R

+
+

+

+
–

–

–

–

Goal. Use as few examples as possible and as li�le computation as possible

to pick a hypothesis (rectangle) R′ which is a close approximation of R.

Informally. The player’s knowledge of R is tested by picking a new point at

random from the same probability distribution D and checking whether the

player can correctly decide whether the point falls inside or outside of R.

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 14 / 94



Probably Approximately Correct (PAC) Learning Preliminary Examples

Example: PAC Learning Axis-Aligned Rectangles (cont’d)

x

y

R

+
+

+

+
–

–

–

–

Goal. Use as few examples as possible and as li�le computation as possible

to pick a hypothesis (rectangle) R′ which is a close approximation of R.

Formally. We measure the risk (error rate) of R′ as the probability that a

randomly chosen point from D falls in the region

R△ R′ = (R \ R′) ∪ (R′ \ R)

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 15 / 94



Probably Approximately Correct (PAC) Learning Preliminary Examples

Example: PAC Learning Axis-Aligned Rectangles (cont’d)

x

y

R

+
+

+

+
–

–

–

–

Motivation. For example: “men of medium build”.

Say, [5’ 6” – 6’] × [150 – 200 pounds]

Assumption. Points are drawn according to the same probability

distribution D as during the training phase.

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 16 / 94



Probably Approximately Correct (PAC) Learning Preliminary Examples

Example: PAC Learning Axis-Aligned Rectangles (cont’d)

x

y

R

+
+

+

+
–

–

–

–

To show: For any target rectangle R, and any distribution D, and for any

small values ε and δ (0 < ε, δ < 1/2), for a suitably chosen value of sample

size m, then

PrS∼Dm

(
RD

(
R,R′

)
≤ ε

)
≥ 1− δ .

(remark: RD (R,R′) = PrD (R△ R′))

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 17 / 94



Probably Approximately Correct (PAC) Learning Preliminary Examples

Example: PAC Learning Axis-Aligned Rectangles (cont’d)

x

y

R

+
+

+

+
–

–

–

–

What is a good strategy to solve this problem?

Hint: Find-S

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 18 / 94



Probably Approximately Correct (PAC) Learning Preliminary Examples

Find-S on Axis-Aligned Rectangles

x

y

R

R′

+
+

+

+
–

–

–

–

R′ ⊆ R ⇒ R△ R′ = R \ R′ = union of 4 rectangular strips

Can we guarantee that each strip has weight under D at most ε/4?
(Then, the error of R′ is at most 4(ε/4) = ε.)

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 19 / 94



Probably Approximately Correct (PAC) Learning Preliminary Examples

Find-S on Axis-Aligned Rectangles (cont’d)

x

y

R

R′

}
T ′

T
{

+
+

+

+
–

–

–

–

Define T to be rectangular strip along the inside top of R that encloses

weight exactly ε/4 under D. (Sweep the top edge of R downwards until we have

swept out weight ε/4.)

Bad Situation. T ′ ⊇ T ⇒ PrD (T ′) ≥ ε/4.

Will happen only if no point in T appears in S. (Note that the particular

point is positive.

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 20 / 94



Probably Approximately Correct (PAC) Learning Preliminary Examples

Find-S on Axis-Aligned Rectangles (cont’d)

x

y

R

R′

}
T ′

T
{

+
+

+

+
–

–

–

–

By definition of T , a single draw from D will miss the region T with

probability exactly 1− ε/4.
=⇒ m independent draws from D all miss T with probability

(
1−

ε

4

)m

same analysis for the other three strips.

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 21 / 94



Probably Approximately Correct (PAC) Learning Preliminary Examples

Find-S on Axis-Aligned Rectangles (cont’d)

x

y

R

R′

}
T ′

T
{

+
+

+

+
–

–

–

–

[Union Bound] The probability that any of the four rectangular strips of

R \ R′ has weight greater than ε/4 is at most

4 (1− ε/4)m .

Want 4(1− ε/4)m≤ δ. Enough if

4(1− ε/4)m ≤ 4e−εm/4 ≤ δ =⇒ m ≥ 4
ε · ln

(
4
δ

)

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 22 / 94



Probably Approximately Correct (PAC) Learning Preliminary Examples

Find-S on Axis-Aligned Rectangles (cont’d)

x

y

R

R′

+
+

+

+
–

–

–

–

m ≥
4

ε
· ln

(
4

δ

)

Analysis holds for any D (only independence was used)

The bound behaves as expected (accuracy, confidence)

The algorithm is efficient
m is a slowly growing function of ε, δ
tightest fit is easy to compute.

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 23 / 94



Probably Approximately Correct (PAC) Learning Preliminary Examples

Find-S on Axis-Aligned Rectangles (cont’d)

x

y

R

R′

+
+

+

+
–

–

–

–

Theorem 5

The concept class of axis-aligned rectangles over the Euclidean plane R2 is

efficiently PAC learnable.

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 24 / 94



Probably Approximately Correct (PAC) Learning Preliminary Examples

Example: PAC Learning Boolean Conjunctions

Problem. Learn Cn : the class of all conjunctions of literals over x1, . . . , xn.
(literal: variable xi , or its negation)

Xn = {0, 1}n

a ∈ Xn is a truth assignment (ai is the i-th bit)

For example,

x1 ∧ x3 ∧ x4 = {a ∈ {0, 1}n : a1 = 1, a3 = 0, a4 = 1} .

size(c) ≤ 2n for any c ∈ C
(binary encoding of any c ∈ C has length O (n lg n))

Theorem 6

The representation class of conjunctions of Boolean literals is efficiently PAC

learnable.

Can you guess the algorithm?

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 25 / 94



Probably Approximately Correct (PAC) Learning Preliminary Examples

Find-S on PAC Learning Boolean Conjunctions

Let Xn = {0, 1}6 and c = x1 ∧ x3 ∧ x4.
1 Start with h = x1 ∧ x1 ∧ · · · ∧ xn ∧ xn = False.
2 Request m examples and look at the positive ones.
3 Delete the variables that are falsified by the positive examples.

A Study of Thinking [5]

example hypothesis h

x1 ∧ x1 ∧ x2 ∧ x2 ∧ x3 ∧ x3 ∧ x4 ∧ x4 ∧ x5 ∧ x5 ∧ x6 ∧ x6
((110101),+) x1 ∧ x2 ∧ x3 ∧ x4 ∧ x5 ∧ x6
((110111),+) x1 ∧ x2 ∧ x3 ∧ ∧x4 ∧ x6
((100111),+) x1 ∧ x3 ∧ x4 ∧x6

h will never err on a negative example of c (h is more specific than c)

Let z be a literal in h \ c. Then z causes h to err only on those positive

examples of c in which z = 0.

p(z) = Pra∼D (c(a) = 1 ∧ z is a 0 in a)

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 26 / 94



Probably Approximately Correct (PAC) Learning Preliminary Examples

Find-S on PAC Learning Boolean Conjunctions (cont’d)

p(z) = Pra∼D (c(a) = 1 ∧ z is a 0 in a)

Every mistake of h can be “blamed” on at least one literal z of h. By the

definition of risk and the union bound we have:

RD (h, c) = Pra∼D (h(a) 6= c(a)) ≤
∑

z∈h

p(z).

Define a literal to be bad if p(z) ≥ ε
2n .

If h contains no bad literals, then

RD (h, c) ≤
∑

z∈h

p(z) ≤ 2n ·
( ε

2n

)
= ε .

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 27 / 94



Probably Approximately Correct (PAC) Learning Preliminary Examples

Find-S on PAC Learning Boolean Conjunctions (cont’d)

Bad literal z: p(z) ≥
ε

2n
, where p(z) = Pra∼D (c(a) = 1 ∧ z is a 0 in a) .

We want to upper bound the probability that a bad literal will appear in h.

For any fixed bad literal z , the probability that this literal is not deleted

from h a�er m examples is at most
(
1−

ε

2n

)m
≤ e−εm/(2n)

=⇒ By the union bound, the probability that there is some bad literal that is

not deleted from h a�er m examples, is at most

2n · e−
εm
2n

Thus,

m ≥

⌈
2n

ε
· ln

(
2n

δ

)⌉

examples are enough to guarantee with probability at least 1− δ that h will

have risk at most ε with respect to c and D. (forward to slide 32)

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 28 / 94



Probably Approximately Correct (PAC) Learning Finite Hypothesis Spaces and Empirical Risk Minimization

Version Spaces Revisited
Hypothesis space H

R = 0.1
R̂ = 0.2

R = 0.08
R̂ = 0.1

R = 0.3
R̂ = 0.2

R = 0.2
R̂ = 0.3

VSH,S

R = 0.03
R̂ = 0

R = 0.1
R̂ = 0

R = 0
R̂ = 0

Is there a general strategy for PAC learning a concept class?

YES! Occam algorithms:

Draw a large enough sample S so that (w.h.p.) we can eliminate all

those hypotheses that have high risk.

Any h that survives in VSH,S must have low true risk since it is

consistent with S.

Pick any such function from the version space. (Find-S is your friend...)

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 29 / 94



Probably Approximately Correct (PAC) Learning Finite Hypothesis Spaces and Empirical Risk Minimization

How Many Examples are Enough?

Theorem 7 (PAC Learning of Finite Concept Classes; [3])

Assume that we want to learn a c ∈ C using a hypothesis spaceH that contains

a finite amount |H| of functions, in the realizable case. For any distribution

D, drawing m ≥
1

ε
·

(
ln |H|+ ln

1

δ

)
examples are enough to guarantee that

any consistent hypothesis h satisfies Pr (RD (h, c) ≤ ε) ≥ 1− δ .

Proof.

Call a hypothesis h bad if RD (h, c) > ε. Then for such a bad h,

Pr (h is consistent with the first training example) < (1− ε)

Pr (h is consistent with all m training examples) < (1− ε)m

Let h1, h2, . . . , hk be all the k hypotheses fromH that are bad. For each such bad
hypothesis hi with i ∈ {1, . . . , k}, consider the bad event

Bi ≡ hi is consistent with all m training examples

Pr (B1 ∨ . . . ∨ Bk) ≤
∑k

i=1 Pr (Bi) < k · (1− ε)m ≤ |H| (1− ε)m ≤ |H| · e−ε·m.

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 30 / 94



Probably Approximately Correct (PAC) Learning Finite Hypothesis Spaces and Empirical Risk Minimization

Applications of Occam’s Razor

Occam Bound. m ≥ 1
ε ·

(
ln (|H|) + ln

(
1
δ

))

Corollary 8 (PAC Learning PlayTennis)

PlayTennis is PAC learnable to risk 0.2 with probability at least 0.9 using
m = 46 examples.

Proof.

1 a�ribute with 3 values (Sky: Sunny, Cloudy, Rainy)

5 a�ributes with 2 values (AirTemp, Humidity, Wind, Water, Forecast)

Language: Conjunction of a�tributes, or null concept:

|H| = 4 · 35 + 1 = 973. Therefore, plugging-in the above values we get:

m ≥

⌈
1

0.2
· (ln (973) + ln(0.1))

⌉
= ⌈45.914⌉ = 46.

Note that there are 3 · 25 = 96 different instances.

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 31 / 94



Probably Approximately Correct (PAC) Learning Finite Hypothesis Spaces and Empirical Risk Minimization

Applications of Occam’s Razor

Occam Bound. m ≥ 1
ε ·

(
ln (|H|) + ln

(
1
δ

))

Corollary 9 (PAC Learning Conjunctions)

Conjunctions are PAC learnable using O
(
1
ε(n+ ln

(
1
δ

)
)
)
examples.

Proof.

|H| = 3n + 1 < 3n+1. By Theorem 7, m ≥
⌈
1
ε ·

(
(n+ 1) ln(3) + ln

(
1
δ

))⌉
.

Note: Even if we use the bound from a general argument, nevertheless we

have actually improved the sample size by a logarithmic factor compared to

the case where we were blaming bad literals for the mistakes.

(see slide 28)

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 32 / 94



Probably Approximately Correct (PAC) Learning Finite Hypothesis Spaces and Empirical Risk Minimization

PAC Learning Conjunctions with Few Relevant Variables

Algorithm Based on Set-Covering.

1 Run Find-S and form a preliminary hypothesis h.

2 Use the literals that appear in h above as a base to cover the negative

examples.

(we can always form a cover because h is a specialization of c)

3 For each literal z ∈ h, let

Sz = {〈x, −©〉 ∈ S | z(x) = 0} .

(that is, Sz is the set of negative examples for which z = 0)

4 Find a collection of z’s (greedy) such that the z’s are literals of h and

Sz ’s cover the set of negative examples of S.

5 Let h′ be the conjunction of all such literals.

Then, |h′| = O (|c| lnm) ≈ O
(
|c| ln

(
n
ε

))
.

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 33 / 94



Probably Approximately Correct (PAC) Learning Finite Hypothesis Spaces and Empirical Risk Minimization

Set Cover Problem

Given an input collection S of subsets of U = {1, 2, . . . ,m}, find a

subcollection T ⊆ S such that |T | is minimized and the sets in T form a

cover of U: ⋃

t∈T

t = U

Assumption: S is itself a cover.

opt(S) denotes the number of sets in a minimum cardinality cover.

Set-cover decision problem “is there a cover of size at most k?” is

NP-complete.

However: efficient greedy heuristic to find a cover R of cardinality at

most O (opt(S) · lnm).

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 34 / 94



Probably Approximately Correct (PAC) Learning Finite Hypothesis Spaces and Empirical Risk Minimization

Set Cover Problem (cont’d)

Want to cover U = {1, 2, . . . ,m}
using sets from the collection S.

Greedy Heuristic for Set Cover.
1 R = ∅
2 s⋆ = argmax{s∈S} |s|
3 R = R ∪ {s⋆}
4 For each set s ∈ S: s = s \ s⋆

5 If R is a cover done; else goto 2.

Let U⋆ ⊆ U. Then, ∃t ∈ S such that

|t ∩ U⋆| ≥
|U⋆|

opt(S)

since U⋆ has a cover of size at most

opt(S) (since U does) and at least

one of the sets in the optimal cover

must cover a 1/opt(S) fraction of U⋆.

Let Ui ⊆ U be the elements not covered a�er i steps. Then,

|Ui+1| ≤ |Ui| − |Ui| /opt(S) = |Ui| · (1− 1/opt(S)) .

⇒ |Ui| ≤ (1− 1/opt(S))i · |U0| = (1− 1/opt(S))i ·m

Want (1− 1/opt(S))i m < 1. Enough if e−i/opt(S)m < 1 ⇒ i > opt(S) lnm

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 35 / 94



Probably Approximately Correct (PAC) Learning Finite Hypothesis Spaces and Empirical Risk Minimization

PAC Learning under the Realizability Assumption

This is a reminder to discuss about a result that Steve Hanneke has

achieved in recent years, when the realizability assumption holds.

However, we need the notion of the VC-dimension in order to

understand the result.

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 36 / 94



Probably Approximately Correct (PAC) Learning Finite Hypothesis Spaces and Empirical Risk Minimization

Agnostic PAC Learning using a Finite Hypothesis Space

Theorem 10 (Agnostic PAC Learning using a Finite Hypothesis Space)

LetH contain a finite amount |H| of functions. For every distribution D,

drawing m ≥
2

ε2
· ln

(
2 |H|

δ

)
examples are enough to guarantee that an

ERM (empirical risk minimization) algorithm A will return a hypothesis h that

satisfies Pr (RD (h, c) ≤ minh⋆∈H {RD (h⋆, c)}+ ε) ≥ 1− δ .

Proof Sketch.

1 Compute the risk of each h ∈ H within ε/2 of its true value, except
with probability at most δ/ |H|. (Hint: Hoeffding’s Bound)

2 Argue that: (free space on next two slides)

RD (h, c) ≤ R̂S (h, c) + ε/2 ≤ R̂S (h
⋆, c) + ε/2 ≤ RD (h⋆, c) + ε .

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 37 / 94



Probably Approximately Correct (PAC) Learning Finite Hypothesis Spaces and Empirical Risk Minimization

Reminder on Hoeffding’s Bound

Proposition 1 (Hoeffding’s Bound)

Let X1, . . . ,Xm be m independent random variables, each taking values in the

range I = [α,β]. Let X = 1
m

∑m
i=1 Xi and µ = E [X ] denote the mean of their

expectations. Then,

Pr (|X − µ| ≥ ǫ) ≤ 2e−2Rǫ2/(β−α)2 .

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 38 / 94



Probably Approximately Correct (PAC) Learning Finite Hypothesis Spaces and Empirical Risk Minimization

Slide Intentionally Le� Blank

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 39 / 94



Probably Approximately Correct (PAC) Learning Finite Hypothesis Spaces and Empirical Risk Minimization

What if |H| = ∞?

We will deal with |H| = ∞ later and prove similar results to what we

have just seen.

But for now we will continue with finite hypotheses spaces.

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 40 / 94



Probably Approximately Correct (PAC) Learning Intractability in Learning

Can we Learn a Disjunction of k ≥ 2 Conjunctions?

Say k = 3. Then a function looks like

(x1 ∧ x5) ∨ (x2 ∧ x4 ∧ x7) ∨ (x3 ∧ x4 ∧ x5 ∧ x7 ∧ x8).

Then, |C| ≤ (3n + 1) · (3n + 1) · (3n + 1) ≤ 3n+1 · 3n+1 · 3n+1 = 33n+3.

The previous theorem implies m =
⌈
1
ε
· ln

(
33n+3

δ

)⌉
=

⌈
3n+3
ε

· ln
(
3
δ

)⌉

training examples are more than enough for PAC learning the class.

So the question becomes:

Is there an algorithm for efficiently PAC learning such functions?

The answer is quite surprising!

Assuming NP 6= RP , we cannot do that efficiently if we useH = C.
(proper learning)

However, we can PAC learn C efficiently if we use a larger class of

functions as our hypothesis spaceH. (representation-independent

learning)

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 41 / 94



Probably Approximately Correct (PAC) Learning Intractability in Learning

The Complexity Class RP

Randomized Polynomial (RP) time. Complexity class of problems for

which a non-deterministic Turing machine:

runs in poly-time w.r.t. the input size,

if the correct answer is NO it returns NO,

if the correct answer is YES it returns YES with probability p ≥ 1/2.

(a YES answer is always correct!)

For correct answer being YES, we get misleading k consecutive NO’s in

k runs with probability ≤ 2−k .

(Receiving a YES would change our evaluation.)

Class co-RP: NO is always correct; YES might be incorrect.

It holds: P ⊆ RP ⊆ NP .

Alternative definition: In RP the NTM accepts a constant fraction of the

computation paths. (In NP we only need one accepting path.) This

immediately shows that RP ⊆ NP .

Let us return to our problem now.

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 42 / 94



Probably Approximately Correct (PAC) Learning Intractability in Learning

An Intractability Result

Theorem 11

If RP 6= NP, the representation class of k-term DNF formulae is not efficiently

PAC learnable for any k ≥ 2.

Proof Idea: Reduce Graph 3-Coloring problem to the problem of finding a

consistent 3-term DNF formula with a sample SG = S+G ∪ S−G .

1
2

3
4

5

〈(0, 1, 1, 1, 1),+〉
〈(1, 0, 1, 1, 1),+〉
〈(1, 1, 0, 1, 1),+〉
〈(1, 1, 1, 0, 1),+〉
〈(1, 1, 1, 1, 0),+〉

〈(0, 0, 1, 1, 1),−〉
〈(0, 1, 0, 1, 1),−〉
〈(1, 0, 0, 1, 1),−〉
〈(1, 0, 1, 0, 1),−〉
〈(1, 1, 0, 1, 0),−〉
〈(1, 1, 1, 0, 0),−〉

Positive examples encode the vertices of the given graph.

Negative examples encode the edges of the given graph.

Show: G is 3-colorable iff SG is consistent with some 3-term DNF.

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 43 / 94



Probably Approximately Correct (PAC) Learning Intractability in Learning

G is 3-colorable⇒ SG consistent with some 3-term DNF

1
2

3
4

5

〈(0, 1, 1, 1, 1),+〉
〈(1, 0, 1, 1, 1),+〉
〈(1, 1, 0, 1, 1),+〉
〈(1, 1, 1, 0, 1),+〉
〈(1, 1, 1, 1, 0),+〉

〈(0, 0, 1, 1, 1),−〉
〈(0, 1, 0, 1, 1),−〉
〈(1, 0, 0, 1, 1),−〉
〈(1, 0, 1, 0, 1),−〉
〈(1, 1, 0, 1, 0),−〉
〈(1, 1, 1, 0, 0),−〉node color

1 red

2 blue

3 green

4 red

5 blue

=⇒





Tr = x2 ∧ x3 ∧ x5
Tb = x1 ∧ x3 ∧ x4
Tg = x1 ∧ x2 ∧ x4 ∧ x5

=⇒ ϕ = Tr ∨ Tb ∨ Tg

Consider a positive example v(i) ∈ S+G . Let color(node i) = red (similar

argument for other colors). Then, Tr is a conjunction of non-red nodes,

so v(i) satisfies Tr (and therefore ϕ).

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 44 / 94



Probably Approximately Correct (PAC) Learning Intractability in Learning

G is 3-colorable⇒ SG consistent with some 3-term DNF

1
2

3
4

5

〈(0, 1, 1, 1, 1),+〉
〈(1, 0, 1, 1, 1),+〉
〈(1, 1, 0, 1, 1),+〉
〈(1, 1, 1, 0, 1),+〉
〈(1, 1, 1, 1, 0),+〉

〈(0, 0, 1, 1, 1),−〉
〈(0, 1, 0, 1, 1),−〉
〈(1, 0, 0, 1, 1),−〉
〈(1, 0, 1, 0, 1),−〉
〈(1, 1, 0, 1, 0),−〉
〈(1, 1, 1, 0, 0),−〉node color

1 red

2 blue

3 green

4 red

5 blue

=⇒





Tr = x2 ∧ x3 ∧ x5
Tb = x1 ∧ x3 ∧ x4
Tg = x1 ∧ x2 ∧ x4 ∧ x5

=⇒ ϕ = Tr ∨ Tb ∨ Tg

Let e(i, j) ∈ S−G . A valid 3-coloring with nodes i and j connected by an edge

implies that they have a different color. But e(i, j) will falsify at least one of

the variables in the term (say Tr ) since at least one of the two nodes must

have color other than red and is therefore included in the term Tr .

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 45 / 94



Probably Approximately Correct (PAC) Learning Intractability in Learning

SG consistent with some 3-term DNF⇒ G is 3-colorable

Let ϕ = Tr ∨ Tb ∨ Tg be consistent with SG .

We claim that the following coloring is valid:

color node i red if v(i) ∈ S+G satisfies Tr .

color node i blue if v(i) ∈ S+G satisfies Tb.

color node i green if v(i) ∈ S+G satisfies Tg .

(break ties arbitrarily if v(i) ∈ S+G satisfies more than one term)

Since ϕ is consistent with SG , every v(i) ∈ S+G satisfies some term ⇒ every

node is assigned a color.

Suppose nodes i and j are assigned the same color (say red). Then both

v(i) and v(j) satisfy term Tr . ⇒ xi 6∈ Tr and moreover xi 6∈ Tr because

these two vectors satisfy Tr and their i-th bit is 0 in one case and 1 in

the other case.

But e(i, j) and v(j) differ only in their i-th bit and if v(j) satisfies Tr , so
does e(i, j). But then this means e(i, j) 6∈ S−G since ϕ is consistent with

SG . Therefore, (i, j) is not an edge in G as required.

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 46 / 94



Probably Approximately Correct (PAC) Learning Intractability in Learning

Why the Reduction is About RP?

PAC learning should work for every small ε and every small δ.

Work against this definition.

If we have a sample S of m training examples (say, all distinct), a PAC

learning algorithm should also be able to learn these m examples to

error ε = 1
m+1 even when the distribution on these points is uniform;

i.e., for every (x, y) ∈ S it holds Prx∼D (x) = 1
m .

But then this means that the algorithm should create a consistent

hypothesis with the training examples.

(Otherwise the risk would be very large.)

Per the PAC criterion, a consistent hypothesis will be created with high

probability.

This explains why we care about RP .

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 47 / 94



Probably Approximately Correct (PAC) Learning Improper Learning to Overcome Intractability

Learning 3-Term DNF Formulae using 3-CNF Formulae

We use the fact:

(u∧v)∨(w∧z) = (u∨w)∧(u∨z)∧(v∨w)∧(v∨z)

So, a 3-term DNF formula can be represented as a 3-CNF formula; i.e.,

a CNF formula where each clause has at most 3 literals.

T1∨T2∨T3 =
∧

u∈T1,v∈T2,w∈T3(u∨v∨w)

In general, this construction can take a k-term DNF formula and

represent it with a k-CNF formula.

Reduce the problem of learning a k-CNF formula to learning
conjunctions:

For every triple (u, v,w) over the original variables {x1, . . . , xn}, create a
variable yu,v,w corresponding to this triple.
Hence number of variables yu,v,w is at most (2n)3, which is O(n3).

(For k-term DNF the corresponding y’s will be O(nk) in total.)

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 48 / 94



Probably Approximately Correct (PAC) Learning Improper Learning to Overcome Intractability

Learning 3-Term DNF Formulae using 3-CNF Formulae

3-CNF over {x1, . . . , xn} is equivalent to a 3-CNF over the new

variables {yu,v,w}.

So:

A truth assignment σ ∈ {0, 1}n corresponding to the variables

{x1, . . . , xn} can be converted in time O(n3) to a truth assignment

corresponding to the variables {yu,v,w}.

So, we can run our algorithm for learning conjunctions in polynomial
time over the variables {yu,v,w}.

Find-S may run in time O(mn); for m examples of bitsize n each.
In the new se�ing: n′ 7→ (2n)3 and m′ ≈ O(n′) = O(n3).

Once we are done learning, we can convert the solution that uses the

variables {yu,v,w} back to {x1, . . . , xn} by simply expanding each

variable {yu,v,w} to the clause (u ∨ v ∨ w).

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 49 / 94



Probably Approximately Correct (PAC) Learning Improper Learning to Overcome Intractability

Learning 3-Term DNF Formulae using 3-CNF Formulae

Finally, we need to argue that the solution that we compute indeed has low

risk.

Let c be the target 3-CNF and D the target distribution over {0, 1}n.
Let c′ be the target 3-CNF using the variables {yu,v,w} and D′ the

(induced) distribution over the assignments to the {yu,v,w} variables.
We need to argue that if h′ has risk less than ε, so does h.

For σ1,σ2 ∈ {0, 1}n with σ1 6= σ2, it follows that we have σ
′
1 6= σ′

2.
So, h′(σ′) 6= c′(σ′) ⇒ there is a unique preimage σ ∈ {0, 1}n such that
h(σ) 6= c(σ) and the weight of σ under D is the same as that of σ′ under
D′.

(We have used the fact that our algorithm learns under any distribution.)

For example, let D be the uniform distribution over {0, 1}n; i.e., each
variable in the truth assignment is satisfied with probability 1/2.
Under D′, a variable yu,v,w corresponding to the clause (u ∨ v ∨ w) is
satisfied with probability 7/8. Similarly, yu,u,u is satisfied with

probability 1/2, or yu,u,u is satisfied with probability 1.
D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 50 / 94



Probably Approximately Correct (PAC) Learning Improper Learning to Overcome Intractability

What if |H| = ∞?

We need the VC-Dimension in order to answer that.

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 51 / 94



Probably Approximately Correct (PAC) Learning VC Dimension and Sample Complexity Bounds

Background on the Vapnik-Chervonenkis (VC) Dimension

The study of the VC dimension and its relevance to distribution-free

results is due to the work of Vladimir Vapnik and Alexey

Chervonenkis [13]. It is due to the last names of these two that the

particular combinatorial parameter received its name.

The connection that the VC dimension has with PAC learning was

popularized by the work of Alselm Blumer, Andrzej Ehrenfeucht, David

Haussler, and Manfred Warmuth, in [4]

Similar ideas extend to situations where we have more than two labels;

i.e., for multi-class classification, where the relevant combinatorial

parameter there is what is called the Natarajan dimension [10] due to

Balas Natarajan; see also, [2].

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 52 / 94



Probably Approximately Correct (PAC) Learning VC Dimension and Sample Complexity Bounds

Dichotomies and Different Classifications of a Sample

Definition 12 (Dichotomy)

A dichotomy of a set S is a partition of S into two disjoint subsets.

Definition 13 (Number of Classifications of a Sample S)

For any hypothesis spaceH, for all finite sets S ⊆ X :

ΠH(S) = {h ∩ S | h ∈ H} .

In other words, we want to be able to enumerate all the possible

labelings (h(x1), h(x2), . . . , h(xm)) that we can give to the set S, as h

runs through H. That is, how many dichotomies H can induce on S.

Thus, ΠH(S) is the set of all the behaviors or dichotomies on S that

are induced or realized by H.

Note that ΠH(S) ≤ 2m.

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 53 / 94



Probably Approximately Correct (PAC) Learning VC Dimension and Sample Complexity Bounds

Growth Function

Definition 14 (Growth Function)

For any natural number m,

ΠH(m) = max{|ΠH(S)| : S ⊆ X ∧ |S| = m} .

Measure of complexity for a hypothesis space
Suppose d = VC-dim (H). Then,

m ≤ d =⇒ ΠH(m) = 2m.
m > d =⇒ ΠH(m) < 2m.

Example 15

Rays on a line:

hϑ(x) =

{
+ , if x ≥ ϑ

− , otherwise

ΠH(m) = m+ 1 .

m points

R

+

+++++
++++++

−−−−−−
−−−−−

−

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 54 / 94



Probably Approximately Correct (PAC) Learning VC Dimension and Sample Complexity Bounds

Sha�ering

Definition 16

A set of instances S ∈ Xm is sha�ered by a hypothesis space H (or, H
sha�ers S) if and only if for every dichotomy of S there exists some

hypothesis in H consistent with this dichotomy.

In other words, if |ΠH(S)| = 2|S|, then S is sha�ered by H.

Further rephrasing: in a set of instances S ⊆ X (|S| = m),H can give

all 2m possible labelings.

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 55 / 94



Probably Approximately Correct (PAC) Learning VC Dimension and Sample Complexity Bounds

The Vapnik-Chervonenkis Dimension

Definition 17 (VC Dimension)

The Vapnik-Chervonenkis dimension, VC-dim (H), of a hypothesis spaceH
defined over the instance space X is the size of the largest finite subset

of X sha�ered by H. If arbitrarily large finite sets of X can be sha�ered

by H, then VC-dim (H) = ∞. In other words,

VC-dim (H) = max{m : ΠH(m) = 2m}

Lower Bound =⇒ Explicit construction that achieves 2m.

Upper Bound =⇒ For any set S of size m we cannot achieve 2m

labelings.

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 56 / 94



Probably Approximately Correct (PAC) Learning VC Dimension and Sample Complexity Bounds

More Examples on the VC-Dimension

Our ray example has VC-dim (Rays) ... equal to 1. To see this, recall
that a hypothesis h calculates:

hϑ(x) = 1 {x ≥ ϑ} .

Therefore,

One point is sha�ered.
Two points cannot be sha�ered (+, −)

Axis-aligned rectangles (AAR) in R
2?

VC-dim (AAR) ≥ 4.
VC-dim (AAR) < 5. It is impossible to sha�er 5 instances.

What about HALFSPACES?

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 57 / 94



Probably Approximately Correct (PAC) Learning VC Dimension and Sample Complexity Bounds

Configurations of 3 Points in 2D

−

−

−

−

− −

− −

++

+

+ +

+

++−−

+

+

+

+ −−

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 58 / 94



Probably Approximately Correct (PAC) Learning VC Dimension and Sample Complexity Bounds

Halfspaces Sha�er 3 Points in 2D

−+

+

+

+

− − + +

+

++

+

+ +

−−

−−

−

−

−

−

−

�estion 1

Can we sha�er 4 points ?

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 59 / 94



Probably Approximately Correct (PAC) Learning VC Dimension and Sample Complexity Bounds

Can Halfspaces Sha�er 4 Points in 2D?

+

+

−

−

+

−
+

+

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 60 / 94



Probably Approximately Correct (PAC) Learning VC Dimension and Sample Complexity Bounds

Halfspaces cannot Sha�er 4 Points in 2D

−

?

+

+

−

+

+

+

−

Theorem 18 (Radon)

Any set of d + 2 points in Rd can be partitioned into two (disjoint) sets whose

convex hulls intersect.

Corollary 19

VC-dim (HALFSPACES) = 3 in 2 dimensions.

VC-dim (HALFSPACES) = d + 1 in d ≥ 1 dimensions.

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 61 / 94



Probably Approximately Correct (PAC) Learning VC Dimension and Sample Complexity Bounds

Learning HALFSPACES

Do we have an algorithm for learning HALFSPACES?

Perceptron

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 62 / 94



Probably Approximately Correct (PAC) Learning VC Dimension and Sample Complexity Bounds

Some Typical Functions Used for Learning

Monotone Conjunctions/Monomials (Boolean AND of some variables

chosen from {x1, x2, . . . , xn})
e.g., c = x2 ∧ x5 ∧ x8 (sometimes simply write c = x2x5x8)

|H| = 2n.

Conjunctions/Monomials (allow negated variables)

e.g., c = x2 ∧ x5 ∧ x8 (c = x2x5x8)

|H| = 3n + 1. (including the constant FALSE function.)

FALSE function can be represented: e.g., c′ = x1 ∧ x1.

Halfspaces e.g., c = sgn(w0 + w1 · x1 + w2 · x2 + . . .+ wn · xn)

sgn(z) =

{
+1 , if z > 0
−1 , if z ≤ 0

|H| = ∞.

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 63 / 94



Probably Approximately Correct (PAC) Learning VC Dimension and Sample Complexity Bounds

Why Are These Functions Used as Toy Examples?

Exhibit bias.

(Monotone) conjunctions is one of the most basic ways of

selecting/combining features/constraints in a prediction mechanism.

Building blocks for richer classes of functions that are less understood;

e.g., general DNF formulae.

(e.g., learning monotone DNF formulae over the uniform distribution is

an open problem.)

Directly or indirectly, applications to logic, circuit complexity, etc.

Typical benchmarks as they usually provide interesting, but non-trivial

insights of the definitions, the bounds that we should expect to get, etc.

Can also be useful in contexts of other disciplines (e.g., psychology)

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 64 / 94



Probably Approximately Correct (PAC) Learning VC Dimension and Sample Complexity Bounds

VC Dimension of Finite Hypothesis Spaces

Theorem 20

If |H| < ∞, then VC-dim (H) ≤ lg (|H|).

Proof.

The VC dimension ofH is the largest integer d for which we can admit all

2d possible labelings on a set of instances of size d . That is, ΠH(d) = 2d .

However, the number of classifications by a finite hypothesis spaceH, is at

most the number of distinct hypotheses in H. Hence, for any integer m, it

holds ΠH(m) ≤ |H|. In particular,

2d = ΠH(d) ≤ |H| .

Thus, d ≤ lg (|H|).

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 65 / 94



Probably Approximately Correct (PAC) Learning VC Dimension and Sample Complexity Bounds

Example: Monotone Conjunctions

Theorem 21

The VC dimension of monotone conjunctions using at most n variables, is

exactly n.

Proof.

Upper Bound. |H| = 2n
(Thm 20)

=⇒ VC-dim (H) ≤ n.

Lower Bound. The following instances give VC-dim (H) ≥ n.

n





0 1 1 1 . . . 1 1 1

1 0 1 1 . . . 1 1 1

1 1 0 1 . . . 1 1 1
...

...
...

...
...

...
...

...

1 1 1 1 . . . 1 0 1

1 1 1 1 . . . 1 1 0

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 66 / 94



Probably Approximately Correct (PAC) Learning VC Dimension and Sample Complexity Bounds

The Φ Function

Definition 22

Define Φd(m) = Φd(m− 1) + Φd−1(m− 1), with Φd(0) = Φ0(m) = 1.

(m, d ∈ N = {0, 1, . . .})

Lemma 23

Φd(m) =
∑d

i=0

(
m
i

)

Proof.

Base cases. If d = 0,
(
m
0

)
= 1 = Φ0(m). If m = 0,

∑d
i=0

(
0
d

)
=

(
0
0

)
= 1.

Inductive Step. We have the following
Φd(m) = Φd(m− 1) + Φd−1(m− 1)

=
∑d

i=0

(
m−1
i

)
+
∑d−1

i=0

(
m−1
i

)
(Induction Hypothesis)

=
∑d

i=0

[(
m−1
i

)
+
(
m−1
i−1

)]
(define

(
m−1
−1

)
= 0)

=
∑d

i=0

(
m
i

)
(Pascal’s triangle)

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 67 / 94



Probably Approximately Correct (PAC) Learning VC Dimension and Sample Complexity Bounds

Polynomial Bound

Lemma 24

For all m ≥ d ≥ 1,
∑d

i=0

(
m
i

)
= Φd(m) ≤

(em
d

)d

Proof.

We have 0 ≤
d

m
< 1. We can write

(
d
m

)d ∑d
i=0

(
m
i

)
≤

∑d
i=0

(
d
m

)i (m
i

)

≤
∑m

i=0

(
d
m

)i (m
i

)

≤
(
1+ d

m

)m
(Binomial Theorem)

≤ ed (see Lemma 33)

Thus,
∑d

i=0

(
m
i

)
= Φd(m) ≤ ed

(
m
d

)d
=

(
em
d

)d
.

Binomial Theorem: (a+ b)n =
∑n

i=0

(n
i

)

aibn−i

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 68 / 94



Probably Approximately Correct (PAC) Learning VC Dimension and Sample Complexity Bounds

Sauer-Shelah Lemma (1972)

Lemma 25 (Sauer-Shelah Lemma)

Let d ≥ 0 and m ≥ 1 be given integers and letH be a hypothesis space such

that VC-dim (H) = d. Then,

ΠH(m) ≤
d∑

i=0

(
m

i

)
= Φ(d,m) = O

(
md

)

The bound is tight. Examples:
Rays in a line: ΠH(m) = m+ 1 = 1+

(
m
1

)
= Φ1(m),

Intervals in a line: ΠH(m) = 1+
(
m
1

)(
m
2

)
= Φ2(m),

and others ...

Has been proved by:

Sauer and Shelah independently of each other in 1972.

Vapnik and Chervonenkis also independently proved this lemma

slightly earlier.

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 69 / 94



Probably Approximately Correct (PAC) Learning VC Dimension and Sample Complexity Bounds

Proof of Sauer-Shelah Lemma (ΠH(m) ≤
∑d

i=0

(
m
i

)
)

m

d

Base Case

m

d

Induction Step

The proof will be a complete induction on m+ d.

Base Case: Holds for any d and m = 0 and for any m and d = 0.

Induction Step: Holds for any m, d with m+ d = k assuming it holds for

all m, d , s.t., m+ d < k.

Facts that will be used.(
m
k

)
=

(
m−1
k

)
+
(
m−1
k−1

)
(used for constructing Pascal’s triangle)(

m
k

)
= 0, if k < 0 or k > m.

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 70 / 94



Probably Approximately Correct (PAC) Learning VC Dimension and Sample Complexity Bounds

Proof of Sauer-Shelah Lemma (ΠH(m) ≤
∑d

i=0

(
m
i

)
)

m

d

Base Case

Case where d = 0. Then, we

cannot sha�er even one instance.

Hence, only one labeling can be

assigned to any set. In other words,

ΠH(m) = 1 =
(
m
0

)
=

∑d
i=0

(
m
i

)
.

Case where m = 0. This is a

degenerate case where we want to

label the empty set.

ΠH(m) ≤ 1 =
∑d

i=0

(
0
i

)
.

(Only one subset of the empty set.)

Perhaps it is simpler to accept the base
case when m = 1:
In this case, either VC-dim (H) ≥ 1, in
which case we can give 2 labels to a
single instance, or it is the case that
VC-dim (H) = 0 and only one behavior
is possible. Either way, it holds that
ΠH(m) ≤ 2 = 1+ 1 =

(
1
0

)
+
(
1
1

)
=∑d

i=0

(
0
i

)

(recall that
(
1
d

)
= 0 for d ≥ 2)

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 71 / 94



Probably Approximately Correct (PAC) Learning VC Dimension and Sample Complexity Bounds

Proof of Sauer-Shelah Lemma (ΠH(m) ≤
∑d

i=0

(
m
i

)
)

Induction Step.

The main step of the proof is the construction of two new hypothesis

spacesH1 andH2 to which we can apply our induction hypothesis.

Given S = {x1, x2, . . . , xm} we want to show ΠH(S) ≤ Φd(m).
H x1 x2 · · · xm−1 xm H1 x1 x2 · · · xm−1 H2 x1 x2 · · · xm−1
h1 0 1 1 0 0 → h1 0 1 1 0
h2 0 1 1 0 1 ր ց h2 0 1 1 0
h3 0 1 1 1 0 → h3 0 1 1 1
h4 1 0 0 1 0 → h4 1 0 0 1
h5 1 0 0 1 1 ր ց h5 1 0 0 1
h6 1 1 0 0 1 → h6 1 1 0 0

H1: Defined byH restricted on the domain of the first m− 1 instances of

the set S.

H2: Defined byH restricted on the domain of the first m− 1 instances of

the set S but have the property that they give a different label in xm
compared to the functions that belong toH1 and give the same labels as

those in H2 in the set S1 = {x1, x2, . . . , xm−1}.

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 72 / 94



Probably Approximately Correct (PAC) Learning VC Dimension and Sample Complexity Bounds

Proof of Sauer-Shelah Lemma (ΠH(m) ≤
∑d

i=0

(
m
i

)
)

Induction Step (cont’d).

Claim 1. VC-dim (H1) ≤ VC-dim (H) = d .

(since all sets sha�ered byH1, will also be sha�ered by H)

=⇒ By induction |ΠH1(S1)| ≤ Φd(m− 1).

Claim 2. VC-dim (H2) ≤ d − 1.

(T sha�ered by H2 ⇒ T ∪ {xm} sha�ered by H)

=⇒ By induction |ΠH1(S1)| ≤ Φd−1(m− 1).

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 73 / 94



Probably Approximately Correct (PAC) Learning VC Dimension and Sample Complexity Bounds

Proof of Sauer-Shelah Lemma (ΠH(m) ≤
∑d

i=0

(
m
i

)
)

Induction Step (cont’d).

Therefore, we have:

|ΠH(S)| = |ΠH1(S1)|+ |ΠH2(S1)|

= |H1|+ |H2|

≤
d∑

i=0

(
m− 1

i

)
+

d−1∑

i=0

(
m− 1

i

)
(Induction Hyp.)

=
d∑

i=0

(
m− 1

i

)
+

d∑

i=0

(
m− 1

i − 1

)
(since

(
m−1
−1

)
= 0)

=
d∑

i=0

[(
m− 1

i

)
+

(
m− 1

i − 1

)]

=

d∑

i=0

(
m

i

)

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 74 / 94



Probably Approximately Correct (PAC) Learning VC Dimension and Sample Complexity Bounds

Fundamental Theorem of Learning Theory

Notation.

M(h, S) : # mistakes h makes on S

B ≡ [∃h ∈ H : (h consistent on S) ∧ RD (h, c) > ε]

B′ ≡
[
∃h ∈ H : (h consistent on S) ∧M(h, S′) ≥

mε

2

]

S : sample of m > 8
ε instances chosen independently from D.

S′ : “ghost sample” of m instances drawn iid from D.

“Double-sample trick”: take the mistakes on S′ as a proxy for a

hypothesis’s generalization error.

Goal. Pr (B) ≤ δ.
Subgoals to prove:

1 Pr (B′ | B) ≥ 1/2 2 Pr (B′) ≤ δ/2

Note that: Pr (B′) ≥ Pr (B′ ∧ B) = Pr (B′ | B) · Pr (B) ≥ 1
2 · Pr (B).

So, subgoals (1) and (2) from above imply the theorem.
D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 75 / 94



Probably Approximately Correct (PAC) Learning VC Dimension and Sample Complexity Bounds

Fundamental Theorem of Learning Theory

Theorem 26 (Fundamental Theorem of Learning Theory)

Assume that we want to learn a c ∈ C using a hypothesis spaceH such thatH
has finite VC-dim (H) = d ≥ 1 and the realizability assumption holds.

Moreover let 0 < δ, ε < 1. Then,

m ≥

⌈
4

ε
·

(
d · lg

(
12

ε

)
+ lg

(
2

δ

))⌉

samples guarantee that for any consistent hypothesis h it holds

PrDm (RD (h, c) ≤ ε) ≥ 1− δ .

We still need an efficient algorithm to efficiently PAC-learn the class.

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 76 / 94



Probably Approximately Correct (PAC) Learning VC Dimension and Sample Complexity Bounds

Fundamental Theorem of Learning Theory

Instead, we will prove in class the following theorem and you will conclude

the proof that connects the two statements as an exercise.

Theorem 27

For any h ∈ H that is consistent with all m > 8
ε examples that are sampled

independently from distribution D, then

PrDm

(
RD (h, c) ≤ 2 ·

lg ΠH(2m) + lg(2/δ)

m

)
≥ 1− δ

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 77 / 94



Probably Approximately Correct (PAC) Learning VC Dimension and Sample Complexity Bounds

Fundamental Theorem of Learning Theory (Proof)

Subgoal 1.Want to show: Pr (B′ | B) ≥ 1/2. Recall:

B ≡ [∃h ∈ H : (h consistent on S) ∧ RD (h, c) > ε]

B′ ≡
[
∃h ∈ H : (h consistent on S) ∧M(h, S′) ≥

mε

2

]

+

+

–

–

+

+

+

+

–

–

–

–

–

+

+

–

+

–

–

–

–

–

–

–

c(x)

h(x)

mistakesSuppose B holds.

Then there exists an h ∈ H such that h is consistent on S (first half)

and RD (h, c) > ε.

In that case we have E [M(h, S′)] = |S′| · RD (h, c) > mε. By Lemma 2

of the handout (Tools for Bounding Probabilities), we have

Pr
(
M(h, S′) < εm

2

)
≤ 1/2.

Hence, Pr (B′ | B) ≥ 1/2.

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 78 / 94



Probably Approximately Correct (PAC) Learning VC Dimension and Sample Complexity Bounds

Fundamental Theorem of Learning Theory (Proof)

Subgoal 2.Want to show: Pr (B′) ≤ δ/2. Recall:

B′ ≡
[
∃h ∈ H : (h consistent on S) ∧M(h, S′) ≥

mε

2

]

Consider the following two experiments.

Experiment 1. Choose S, S′ iid from D.

Experiment 2. Choose S, S′ iid fromD but for i ∈ {1, 2, . . . ,m} swap xi ∈ S

with x ′i ∈ S′ with probability 1/2 and call the resulting samples T and T ′.

Note. T and T ′ have the same distribution as S, S′.
Define

B′′ ≡
[
∃h ∈ H : (h consistent on T ) ∧ (M(h, T ′) ≥ mε

2 )
]

≡
[
∃h ∈ H : (M(h, T ) = 0) ∧ (M(h, T ′) ≥ mε

2 )
]

Observation 1. It holds that Pr (B′′) = Pr (B′).

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 79 / 94



Probably Approximately Correct (PAC) Learning VC Dimension and Sample Complexity Bounds

Fundamental Theorem of Learning Theory (Proof)

Define

b(h) ≡
[
h consistent with T ∧M(h, T ′) ≥ mε

2

]

Observation 2. We have Pr (b(h) | S, S′) ≤ 2−mε/2.

Note that b(h) is asking about the event that all ℓ mistakes that h will make

on both T and T ′, arise only in T ′. Then this probability is

(
m
ℓ

)
(
2m
ℓ

) =
ℓ−1∏

i=0

(m− i)

(2m− i)
≤

ℓ−1∏

i=0

(
1

2

)
= 2−ℓ .

One can also prove this with a case-by-case analysis.

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 80 / 94



Probably Approximately Correct (PAC) Learning VC Dimension and Sample Complexity Bounds

Fundamental Theorem of Learning Theory (Proof)

Recall that
{

b(h) ≡
[
h consistent with T ∧M(h, T ′) ≥ mε

2

]

B′′ ≡
[
∃h ∈ H : (M(h, T ) = 0) ∧ (M(h, T ′) ≥ mε

2
)
]

Observation 3. It holds that Pr (B′′) ≤ ΠH(2m) · 2−mε/2.

The number of behaviors we can have on the 2m instances in T , T ′ is finite,

given by ΠH(2m). For each behavior we select a single representative

hypothesis h ∈ H giving that behavior, thus creating a setH(S, S′) of
ΠH(2m) representative hypotheses.
We have:

Pr
(
B′′

)
= Pr (∃h ∈ H : b(h))

(
= ES,S′

[
Pr

(
B′′ | S, S′

)])

= ES,S′
[
Pr

(
∃h ∈ H : b(h) | S, S′

)]
(marginalization)

= ES,S′
[
Pr

(
∃h ∈ H(S, S′) : b(h) | S, S′

)]

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 81 / 94



Probably Approximately Correct (PAC) Learning VC Dimension and Sample Complexity Bounds

Fundamental Theorem of Learning Theory (Proof)

In other words, we have:

Pr
(
B′′

)
= ES,S′

[
Pr

(
∃h ∈ H(S, S′) : b(h) | S, S′

)]

≤ ES,S′


 ∑

h∈H(S,S′)

Pr
(
b(h) | S, S′

)

 (union bound)

≤ ES,S′

[
ΠH(2m) · 2−mε/2

]

= ΠH(2m) · 2−mε/2

Therefore, we have finally proved that

Pr (B) ≤ 2Pr
(
B′
)
= 2Pr

(
B′′

)
≤ 2 · ΠH(2m) · 2−mε/2 ,

which we require to be upper bounded by δ and therefore we get

ε ≥
2

m
· (lg (ΠH(2m)) + lg (2/δ)) .

QED
D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 82 / 94



Probably Approximately Correct (PAC) Learning VC Dimension and Sample Complexity Bounds

VC Dimension: How Many Examples are Necessary for

Learning (Distribution Independently)?

Theorem 28

Any algorithm for PAC-learning a concept class of VC dimension d with

parameters ε < 1/16 and δ ≤ 1/15, must use

m >
d − 1

64ε

training examples in the worst case.

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 83 / 94



Probably Approximately Correct (PAC) Learning VC Dimension and Sample Complexity Bounds

Proving the Lower Bound

Let X = {x1, . . . , xd} be sha�ered by C.

Construct a pathological distribution that forces any algorithm to take

many examples.

supp(D) = X ⇒ w.l.o.g. C = C(X), so C is a finite class, |C| = 2d .

Choosing a c from C is equivalent to tossing a fair coin d times to

determine the labeling on X .

Suppose there is a learning algorithm A that uses at most m =
⌈
d−1
64ε

⌉

training examples producing a hypothesis h.

Want to show: (∃D on X )(∃c ∈ C) [PrS∼Dm (RD (h, c) > ε) > 1/15].

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 84 / 94



Probably Approximately Correct (PAC) Learning VC Dimension and Sample Complexity Bounds

Proving the Lower Bound

Define D independently of A:{
Pr (x1) = 1− 16ε

Pr (x2) = Pr (x3) = . . . = Pr (xd) =
16ε
d−1

Let X ′ = {x2, x3, . . . , xd}.

Let R′
D (h, c) = Prx∼D (h(x) 6= c(x) ∧ x ∈ X ′).

Note that

RD (h, c) = Prx∼D (h(x) 6= c(x))

≥ Prx∼D

(
h(x) 6= c(x) ∧ x ∈ X ′

)

= R′
D (h, c) .

It is easier to prove PrS∼Dm (R′
D (h, c) > ε) > 1/15.

But then the result follows from the above observation.

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 85 / 94



Probably Approximately Correct (PAC) Learning VC Dimension and Sample Complexity Bounds

Proving the Lower Bound

Probabilistic argument: Pick a random c ∈ C and show that c is hard to

learn for A with positive probability. This implies that there is at least one

c ∈ C that is hard to learn for A.

Idea: Argue that the sample S containing m iid examples from D, will miss

more than half of the points from X ′.

h will be ‘guessing’ the labels for these points ⇒ inevitable to have

large risk under D.

Expected # of instances from X ′ appearing in S:

µ =
[

16ε
d−1 · (d − 1)

]
·
(
d−1
64ε

)
= d−1

4 .

Markov⇒ Pr
(
# of instances from X ’ in S ≥ d−1

2

)
≤

d−1
4

d−1
2

= 1/2.

Define the bad event

B ≡ S contains less than d−1
2 instances from X ′ .

By the above,

PrS∼Dm (B) = 1− PrS∼D

(
# instances from X ’ in S ≥

d − 1

2

)
≥

1

2
. (1)

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 86 / 94



Probably Approximately Correct (PAC) Learning VC Dimension and Sample Complexity Bounds

Proving the Lower Bound

h is independent of X ′ \ S

we pick c ∈ C at random

So, h will make a mistake on each instance x ∈ X ′ \ S with probability 1/2.

Each instance x ∈ X ′ \S contributes to R′
D (h, c) an amount of 1

2 ·
16ε

(d−1) .

When the bad event B occurs, we have |X ′ \ S| > d−1
2 .

This implies

Ec,S

[
R′
D (h, c) | B

]
> 4ε . (2)

By (1) and (2) we get a lower bound on Ec,S [R
′
D (h, c)]:

Ec,S

[
R′
D (h, c)

]
≥ Ec,S

[
R′
D (h, c) | B

]
· PrS (B)>(4ε) · (1/2) = 2ε .

(We used E [Y ] =
∑

i E [Y | Ai] · Pr (Ai), where Ai : finite or countable partition of the

sample space.)

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 87 / 94



Probably Approximately Correct (PAC) Learning VC Dimension and Sample Complexity Bounds

Proving the Lower Bound

Ec,S [R
′
D (h, c)] > 2ε =⇒ (∃c⋆ ∈ C) [ES [R

′
D (h, c⋆)] > 2ε].

Take that c⋆ as the target concept.

Show that A will be prone to produce an h with large risk.

R′
D (h, c) = Prx∼D (h(x) 6= c(x) ∧ x ∈ X ′) ≤ Prx∼D (x ∈ X ′) = 16ε. So,

ES

[
R′
D (h, c) | R′

D (h, c, >) ε
]
≤ 16ε .

Therefore,

2ε < ES

[
R′
D (h, c)

]

= PrS
(
R′
D (h, c) > ε

)
· ES

[
R′
D (h, c) | R′

D (h, c) > ε
]

+(1− PrS
(
R′
D (h, c) > ε

)
) · ES

[
R′
D (h, c) | R′

D (h, c,≤) ε
]

≤ PrS
(
R′
D (h, c) > ε

)
· (16ε) + (1− PrS

(
R′
D (h, c) > ε

)
) · (ε)

= 15ε · PrS
(
R′
D (h, c) > ε

)
+ ε .

In other words, PrS (R
′
D (h, c) > ε) > 1

15 .

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 88 / 94



Probably Approximately Correct (PAC) Learning VC Dimension and Sample Complexity Bounds

Summary of Sample Complexity Bounds – Learning in the

Realizable Case

Below are the results that we have seen in class.

Theorem 29 ([3])

LetH be a finite hypothesis class. Under the realizability assumption, a

concept class C is PAC-learnable byH with sample complexity

m ≤
⌈
1
ε · ln

(
|H|
δ

)⌉
.

Theorem 30 ([4, 13])

LetH be a hyp. class with VC-dim (H) = d < ∞. Under the realizability

assumption, a concept class C is PAC-learnable by H with sample complexity

m ∈ O
(
1
ε · (d ln (1/ε) + ln (1/δ))

)

m ∈ Ω
(
1
ε (d + ln(1/δ))

)
.

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 89 / 94



Probably Approximately Correct (PAC) Learning VC Dimension and Sample Complexity Bounds

On the Logarithmic Gap of the Sample Complexity

Bounds (Learning in the Realizable Case)

Improved Lower Bound. Auer and Ortner have shown in [1] that

m ∈ Ω

(
1

ε
· (d ln (1/ε) + ln (1/δ))

)

examples are necessary when we want to guarantee with probability at

least 1− δ that (∀h ∈ H)[R̂S (h, c) = 0 =⇒ RD (h, c) ≤ ε].
Improved Upper Bound. On the other hand, Hanneke has shown in [6]

that when we do more careful selection of an h ∈ H that is not just

consistent with the training sample S, then we can in fact improve the

upper bound to

m ∈ O

(
1

ε
· (d + ln (1/δ))

)
.

Hanneke’s algorithm, takes a majority vote on classifiers that have been

trained on subsets of the entire training set.
D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 90 / 94



Probably Approximately Correct (PAC) Learning VC Dimension and Sample Complexity Bounds

Summary of Sample Complexity Bounds – Agnostic

Learning

Recall that we want to satisfy: Pr (RD (h, c) ≤ minh⋆∈H {RD (h⋆, c)}+ ε) ≥ 1− δ.

Theorem 31 (Agnostic PAC Learning – Finite Hypothesis Space; see, e.g., [9])

LetH be such that |H| < ∞. Then,H is agnostic PAC learnable with sample

complexity

m ∈ O

(
1

ε2
· ln

(
|H|

δ

))

Theorem 32 (Agnostic PAC Learning – Finite VC Dimension; see, e.g., [11])

LetH be a hypothesis space from a domain X to {0, 1}n, such that

VC-dim (H) = d < ∞. Then,H is agnostic PAC learnable with sample

complexity

m ∈ Θ

(
1

ε2
(d + ln(1/δ))

)

Note that the bound based on the VC dimension is tight.
D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 91 / 94



Probably Approximately Correct (PAC) Learning VC Dimension and Sample Complexity Bounds

References I

[1] Peter Auer and Ronald Ortner. A new PAC bound for

intersection-closed concept classes. Machine Learning, 66(2-3):151–163,

2007.

[2] Shai Ben-David, Nicolò Cesa-Bianchi, David Haussler, and Philip M.

Long. Characterizations of Learnability for Classes of {0, ..., n}-Valued

Functions. Journal of Computer and System Sciences, 50(1):74–86, 1995.

[3] Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and Manfred K.

Warmuth. Occam’s Razor. Information Processing Le�ers,

24(6):377–380, 1987.

[4] Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and Manfred K.

Warmuth. Learnability and the Vapnik-Chervonenkis dimension.

Journal of the ACM, 36(4):929–965, October 1989.

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 92 / 94



Probably Approximately Correct (PAC) Learning VC Dimension and Sample Complexity Bounds

References II

[5] Jerome S. Bruner, Jacqueline J. Goodnow, and George A. Austin. A

study of thinking. John Wiley & Sons, New York, NY, USA, 1957.

[6] Steve Hanneke. The optimal sample complexity of PAC learning.

Journal of Machine Learning Research, 17:38:1–38:15, 2016.

[7] Michael J. Kearns and Umesh V. Vazirani. An Introduction to

Computational Learning Theory. MIT Press, 1994.

[8] Tom M. Mitchell. Machine Learning. McGraw-Hill, New York, 1997.

[9] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar.

Foundations of Machine Learning. Adaptive computation and machine

learning. MIT Press, 2012.

[10] B. K. Natarajan. On Learning Sets and Functions. Machine Learning,

4:67–97, 1989.

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 93 / 94



Probably Approximately Correct (PAC) Learning VC Dimension and Sample Complexity Bounds

References III

[11] Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine

Learning - From Theory to Algorithms. Cambridge University Press,

2014.

[12] Leslie G. Valiant. A Theory of the Learnable. Communications of the

ACM (CACM), 27(11):1134–1142, 1984.

[13] Vladimir N. Vapnik and Alexey Y. Chervonenkis. On the uniform

convergence of relative frequencies of events to their probabilities.

Theory of Probability & Its Applications, 16(2):264–280, 1971. Original

publication appeared in 1968 in Russian in Dokl. Akad. Nauk SSSR, 181

(4): 781. 1968.

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 94 / 94



Facts from Mathematics

Table of Contents

2 Facts from Mathematics

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 95 / 94



Facts from Mathematics

Bounding Euler’s Constant

Lemma 33

Let n ∈ N
∗. Then,

(
1+ 1

n

)n
≤ e ≤

(
1+ 1

n

)n+1
. (Back to Φ; Lemma 24)

Proof.

Let t ∈
[
1, 1+ 1

n

]
. Then, 1

1+ 1
n

≤ 1
t ≤ 1. Hence,

∫ 1+ 1
n

1

1

1+ 1/n
dt ≤

∫ 1+ 1
n

1

dt

t
≤

∫ 1+ 1
n

1

1 · dt

Equivalently, 1
1+1/n · [t]

1+1/n
1 ≤ [ln(t)]

1+1/n
1 ≤ [t]

1+1/n
1 . In other words,

n

n+ 1
·
1

n
≤ ln

(
1+

1

n

)
≤

1

n
(3)

LHS of (3)
=⇒ e

1
n+1 ≤ 1+ 1

n ⇐⇒ e ≤ (1+ 1/n)n+1

RHS of (3)
=⇒ 1+ 1

n ≤ e
1
n ⇐⇒ (1+ 1/n)n ≤ e

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 96 / 94



Facts from Mathematics

Bounding the Inverse of Euler’s Constant

In a similar manner, by looking at the interval
[
1− 1

n , 1
]
, one can prove the

following.

Lemma 34

Let n ∈ N, such that n ≥ 2. Then,

(
1−

1

n

)n

≤
1

e
≤

(
1−

1

n

)n−1

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 97 / 94


	Probably Approximately Correct (PAC) Learning
	Introduction and Motivation
	Definitions
	Preliminary Examples
	Finite Hypothesis Spaces and Empirical Risk Minimization
	Intractability in Learning
	Improper Learning to Overcome Intractability
	VC Dimension and Sample Complexity Bounds

	References
	Appendix
	Facts from Mathematics


