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Overview of Evolvability and the Swapping Algorithm

Evolvability

Evolvability [Valiant, 2009] was based on Darwin’s work On the Origin of

Species by Means of Natural Selection [Darwin, 1859].
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Overview of Evolvability and the Swapping Algorithm

Evolvability

Key Points

Species (Hypotheses), Generations (Iterations).

A fitness function called performance.

Estimated through sampling.

Mutations define the Neighborhood.

Tolerance t partitions the Neighborhood:

Bene = {h′ | PerfDn
(h′, c)> PerfDn

(h, c)+ t} .
Neut = {h′ | PerfDn

(h′, c)≥ PerfDn
(h, c)− t} \ Bene.

Deleterious, the rest.

Goal

Pr (PerfDn (h, c) < PerfDn (c, c)− ε) < δ. (1)

Evolution should proceed from any starting point!
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The Swapping Algorithm on Monotone Conjunctions

x ∧ y

0.5

44

t = 0.1 q

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 6 / 26



Overview of Evolvability and the Swapping Algorithm

The Swapping Algorithm on Monotone Conjunctions

x ∧ y

x y

0.5

0.25 0

t = 0.1 q

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 7 / 26



Overview of Evolvability and the Swapping Algorithm

The Swapping Algorithm on Monotone Conjunctions

x ∧ y

x y x ∧ y ∧ z x ∧ y ∧ w

. . .

. . .

0.5

0.25 0 0.88 0.69

t = 0.1 q

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 8 / 26



Overview of Evolvability and the Swapping Algorithm
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Overview of Evolvability and the Swapping Algorithm

Performance

Xn = {0, 1}
n.

h(x), c(x) ∈ {+1,−1}.

PerfDn (h, c) =
∑

x∈Xn

h(x)c(x)Dn(x)

= 1− 2 · Pr (h(x) 6= c(x))

= E [h · c] .

Estimated through sampling,

PerfDn (h, c, S) =
1

|S|

∑

x∈S

h(x) · c(x) .
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Remarks and Some Related Results

Preliminary Remarks

Remark 1 (vs. PAC)

Evolvability is a restricted case of PAC learnability.

Goal 1 (Evolvability)

Pr
(
PerfDn

(h, c) < PerfDn
(c, c)− ε

)
< δ .

Goal 2 (PAC Learning)

Pr (errorDn (h, c) > ε) < δ .
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Remarks and Some Related Results

Preliminary Remarks

Remark 2 (on the Updates)

Updates depend only on the positivity and negativity of the examples or

experiences, in the sense that there is no dependence on the description of the

examples (as is the case in the Statistical �ery model); e.g., # of 1’s in binary

representation.

Remark 3 (vs. SQ model, Valiant, 2009)

Evolvable function classes ⊂ SQ learnable function classes.
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Remarks and Some Related Results

Preliminary Remarks

Description 1 (The Tool on the SQ Model is a�ery)

Let ψ : {0, 1}n × {−1, 1} 7→ {−1, 1}.

A query is a pair (ψ, τ).

Estimate E [ψ(x, ℓ)] within tolerance τ .

Description 2 (Types of �eries)

independent of the target (i.e. ψ depends only on x)

correlational if ψ (x, ℓ) ≡ g(x)c(x).

Proposition 1

Any statistical query can be substituted by two statistical queries that are

independent of the target and two correlational queries.

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 14 / 26



Remarks and Some Related Results

A Simulation Result

Remark 4 (CSQ Learnability⇒ Evolvability; Feldman 2008)

Let C be a concept class CSQ learnable over a class of distributions D by a

polynomial time algorithm A. Then, there exists an evolutionary algorithm

N(A) such that C is evolvable by N(A) over D.
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Remarks and Some Related Results

Related Results in Evolvability

Feldman CSQ→ Evolvability algorithm [Feldman, 2008].

Full conjunctions are evolvable [Feldman, 2009].

Using Boolean loss monotone conjunctions are not

evolvable distribution-independently [Feldman, 2011].

Using quadratic lossmonotone conjunctions are evolvable

distribution-independently [Feldman, 2012].

D, Turán / D Swapping algorithm under Un [DT, 2009].
Swapping algorithm under any Bn [D, 2016].
(1+1) EA under some Bn [D, 2021].

Kanade, Valiant, Vaughan Evolvability with dri�ing targets [KVV,

2010].

Kanade Recombination, parallel CSQ learning and general

conjunctions [Kanade, 2011].

More Results Michael [Michael, 2009], P Valiant [PValiant, 2012],

Angelino and Kanade [AK, 2014].
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Remarks and Some Related Results

Basic Notation

Representation

Hypotheses are conjunctions of boolean variables; e.g.,

h1 = x1 ∧ x5 ∧ x8.

Size / length: # vars in the conjunction; e.g., |h1| = 3.

Represented as a set of indices; e.g., h1 = {1, 5, 8}.

Also useful: represented by a bitstring; e.g., h1 = 10001001.

Hamming distance d(h1, h2): # positions where the bitstrings
representing h1 and h2 differ.

Hypothesis Space

H = C
≤q
n . Hypotheses such that 0 ≤ |h| ≤ q. (← non-realizable)

H = Cn = C
≤q
n ∪ C

>q
n . Hypotheses such that 0 ≤ |h| ≤ n.
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Remarks and Some Related Results

Concept Class and Hypothesis Space

x1x2 . . . xn

∅

x1 x2 xn

x1x2 x1x3 xn−1xn

0

1

2

q

n

Level

all conjunctions with
precisely q variables

Concept Class

Hypothesis Space
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Remarks and Some Related Results

Monotone Conjunctions under the Uniform Distribution

are Evolvable

properties
[Valiant, 2007] [D & Turán, 2009] [D, 2016]

H = Cn H = Cn H = C
≤q
n

q O (lg(n/ε)) O (lg(1/ε)) O (lg(1/ε))

generations O (n lg(n/ε)) O (n lg(1/ε)) 2q

sample size Õ
(
(n/ε)6

)
Õ
(
n2/ε2 + n/ε4

)
Õ
(
n/ε4

)

Theorem 1 (D & Turán, 2009)

Set q = ⌈lg(3/ε)⌉ . For every target conjunction c and every initial hypothesis

h0 it holds that a�er O
(
q + |h0| ln

1
δ

)
iterations, each iteration evaluating the

performance of O (nq) hypotheses, and each performance being evaluated

using sample size O
((

1
ε

)4 (
ln n+ ln 1

δ + ln 1
ε

))
per iteration, the goal is

achieved.
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Monotone Conjunctions under the Uniform Distribution Preliminaries

Correlation under the Uniform Distribution

h =

mutual︷ ︸︸ ︷∧

i∈M

xi ∧

redundant︷ ︸︸ ︷∧

ℓ∈R

xℓ

︸ ︷︷ ︸
bad

and c =
∧

i∈M

xi ∧

undiscovered︷ ︸︸ ︷∧

k∈U

xk

︸ ︷︷ ︸
good

(2)

PerfUn (h, c) = 1− 21−(m+u) − 21−(m+r) + 22−(m+r+u)

= 1− 21−|c| − 21−|h| + 22−|h|−u
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Monotone Conjunctions under the Uniform Distribution Preliminaries

Strategy

h =
∧

i∈M

xi ∧
∧

ℓ∈R

xℓ and c =
∧

i∈M

xi ∧
∧

k∈U

xk

Short target⇒ Find target precisely (w.h.p.)

Long target⇒ Find some good approximation (w.h.p.)

Lemma 2 (Performance Lower Bound)

If |h| ≥ q and |c| ≥ q + 1 then PerfUn
(h, c) > 1− 3 · 2−q.

Corollary 3

Let q ≥ lg(3/ε), |h| ≥ q, |c| ≥ q + 1 =⇒ PerfUn
(h, c) > 1− ε.
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Monotone Conjunctions under the Uniform Distribution Properties of the Local Search

Guiding the Search

goodgood bad good bad bad

(a) u ≥ 2 (b) u = 1 (c) u = 0

∆ = PerfUn

(
h′, c

)
− PerfUn (h, c)

Theorem 4 (Structure of Best Approximations)

The best q-approximation of a target c is

c itself if |c| ≤ q

any hypothesis formed by q good variables if |c| > q.
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Monotone Conjunctions under the Uniform Distribution Examples

Example 1: Short Initial Hypothesis and Short Target

goodgood bad good bad bad

(a) u ≥ 2 (b) u = 1 (c) u = 0

Let X8 = {0, 1}
8 such that {g1, g2, g3, b1, b2, b3, b4, b5}, the target be

c = g1 ∧ g2 ∧ g3, and require ε = 1/5. (q = 4)

Step i u Hypothesis hi Performance Neighborhood Class

0

≥ 2

∅ −3/4 N+

Bene

1 b1 0 N+ ∪ {swaps: b → g}
2 b1 ∧ b2 3/8 N+ ∪ {swaps: b → g}
3 b1 ∧ b2 ∧ b3 9/16 N+ ∪ {swaps: b → g}
4 b1 ∧ b2 ∧ b3 ∧ b4 21/32 {swaps: b → g}
5 b1 ∧ g3 ∧ b3 ∧ b4 22/32 {swaps: b → g}
6 1 g1 ∧ g3 ∧ b3 ∧ b4 24/32 {swaps: b → g}
7 0 g1 ∧ g3 ∧ g2 ∧ b4 28/32 {remove b}
8 0 g1 ∧ g3 ∧ g2 1 {h8} Neut

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 24 / 26



Monotone Conjunctions under the Uniform Distribution Examples

Example 2: Short Initial Hypothesis and Long Target

Let X13 = {0, 1}
13 such that {g1, g2, g3, g4, g5, g6, g7, b1, b2, b3, b4, b5, b6}, the

target be c = g1 ∧ g2 ∧ g3 ∧ g4 ∧ g5 ∧ g6 ∧ g7, and require ε = 1/5. (q = 4)

Step i u Hypothesis hi Performance Neighborhood Class

0

≥ 2

∅ −63/64 N+

Bene
1 b1 0 N+ ∪ {swaps: b → g}
2 b1 ∧ b2 63/128 N+ ∪ {swaps: b → g}
3 b1 ∧ b2 ∧ b3 189/256 N+ ∪ {swaps: b → g}
4

≥ 2

b1 ∧ b2 ∧ b3 ∧ b4 425/512 {all swaps} ∪ {h4}

Neut
5 b1 ∧ b6 ∧ b3 ∧ b4 425/512 {all swaps} ∪ {h5}
6 b1 ∧ b6 ∧ b3 ∧ b5 425/512 {all swaps} ∪ {h6}
7 b1 ∧ b6 ∧ b3 ∧ b5 425/512 {all swaps} ∪ {h7}
8

≥ 2

g1 ∧ b6 ∧ b3 ∧ b5 426/512 {swaps: b → g}
Bene9 g1 ∧ b6 ∧ b3 ∧ g4 428/512 {swaps: b → g}

10 g1 ∧ b6 ∧ g6 ∧ g4 432/512 {swaps: b → g}
11

≥ 2

g1 ∧ g3 ∧ g6 ∧ g4 440/512 {swaps: g → g} ∪ {h11}

Neut
12 g1 ∧ g3 ∧ g5 ∧ g4 440/512 {swaps: g → g} ∪ {h12}
13 g1 ∧ g3 ∧ g5 ∧ g4 440/512 {swaps: g → g} ∪ {h13}
14 g2 ∧ g3 ∧ g5 ∧ g4 440/512 {swaps: g → g} ∪ {h14}
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