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Learning with Decision Trees

What Decision Trees are?

@ The material is based primarily on Tom Mitchell’s book [4, Ch. 3]

Sunny Overcast Rain

% %
Hzgh Normal S trong Weak
No Yes No Yes

@ We can also view the decision tree in disjunctive normal form (DNF).
(Outlook = Sunny A Humidity = Low)
V  (Outlook = Overcast)
V  (Outlook = Rain A Wind = Weak)
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Learning with Decision Trees

How do we Construct a Decision Tree?

Q: Which attribute should we put in the root?

@ Our answer is based on the entropy function.

Entropy. The entropy is calculated as shown below.

@ If we have two classes ({0, 1}), then:

Entropy (S) = —polog, po — p1log; p1
= —polog; po — (1= po) logy(1 — po)
= —(1—p1)logy(1— p1) — p1log, p1

positive v \
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negative
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Learning with Decision Trees

How do we Construct a Decision Tree? (cont’d)

@ In general, if we have k classes, the entropy of S

k
Entropy (S) = — Z pilog, p; .

i=1
) lfp, =0, then set pi |Og2 pi = 0 (consistent with lim,_, o+ plog, p)
o Ultimately we care about the Information Gain.
S
Gain (S, A) = Entropy (S) — Z ||SV|| - Entropy (Sy)

vEValues(A)

Figure: figure here
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Learning with Decision Trees

How do we Construct a Decision Tree? (cont’d)

@ Associate training examples to
each node that we construct
o At the root we assign all the
training examples S

@ lterate over the attributes that
we have not used and identify
which attribute yields the
largest information gain.

o Use that attribute A as a test
for that node.
@ The recursive process stops
when a node becomes “pure”.
S=5US5US; o pure node: all the examples
associated with the node
have the same label.
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ID3 Algorithm

ID3(Examples, Target.attribute, Attributes)
Examples are the training examples. Target attribute is the attribute whose value is to be
predicted by the tree. Attributes is a list of other attributes that may be tested by the learned
decision tree. Returns a decision tree that correctly classifies the given Examples.
o Create a Root node for the tree
o If all Examples are positive, Return the single-node tree Root, with label = +
o If all Examples are negative, Return the single-node tree Root, with label = —
o If Artributes is empty, Return the single-node tree Root, with label = most common value of
Target_attribute in Examples
o Otherwise Begin
® A <« the attribute from Attributes that best* classifies Examples
o The decision attribute for Root < A
o For each possible value, v;, of A,
® Add a new tree branch below Root, corresponding to the test A = v;
o Let Examples,; be the subset of Examples that have value v; for A
® If Examples,, is empty
e Then below this new branch add a leaf node with label = most common
value of Target_attribute in Examples
o Else below this new branch add the subtree
ID3(Examples,;, Target attribute, Attributes — {A}))
e End

e Return Root
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Learning with Decision Trees

Comments

Problems Appropriate for Decision Trees

@ Disjunctive descriptions may be required

@ Training data may contain errors

@ Training data may be missing attribute values
Bias in Decision Trees

@ Shorter trees are preferred

@ Select trees that place attributes with highest information gain closest
to the root.

@ No backtracking.
Origins of Algorithms
o ID3 (lterative Dichotomizer 3) — due to Quinlan [5].
@ CART (Classification and Regression Trees) — due to Breiman [1].
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Example: Play Tennis

Day  Outlook  Temperature —Humidity = Wind  PlayTennis
D1 Sunny Hot High ‘Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal  Weak Yes
D6 Rain Cool * Normal  Strong No
D7 Overcast Cool Normal  Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal ~ Weak Yes
D10 Rain Mild Normal  Weak Yes
Dil  Sunny Mild Normal  Strong Yes
D12 Overcast Mild High Strong Yes
D13 Overcast Hot Normal  Weak Yes
D14 Rain Mild High Strong No

@ What is the information gain

we use the attribute Wind to
split this set of training

examples?

D. Diochnos (OU - CS)

if o Values(Wind) = {Weak, Strong}
® Sweak = (6D, 20]
@ Sstrong = [3D, 3C)]
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Learning with Decision Trees
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Example: Play Tennis

Day  Outlook  Temperature Humidity =~ Wind  PlayTennis
D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal ~ Weak Yes
D6 Rain Cool * Normal  Strong No
D7 Overcast Cool Normal  Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal  Weak Yes

D10 Rain Mild Normal = Weak Yes

D11 Sunny Mild Normal  Strong Yes

DI2  Overcast Mild High Strong Yes

D13 Overcast Hot Normal Weak Yes

D14 Rain Mild High Strong No

Based on this decomposition we can calculate the following.

Entropy (S)
Entropy (Sweak)
Entropy <SStrong

D. Diochnos (OU - CS)
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Example: Play Tennis

Day  Outlook  Temperature —Humidity =~ Wind  PlayTennis
D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal  Weak Yes
D6 Rain Cool * Normal  Strong No
D7 Overcast Cool Normal  Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal ~ Weak Yes
D10 Rain Mild Normal  Weak Yes
DIl Sunny Mild Normal  Strong Yes
D12 Overcast Mild High Strong Yes
D13 Overcast Hot Normal  Weak Yes
D14 Rain Mild High Strong No
. . |Sv]
Gain (S,Wind) = Entropy (S) — Z § Entropy (S,)
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Learning with Decision Trees

Example: Play Tennis

Day  Outlook  Temperature ~Humidity ~ Wind  PlayTennis

D1 Sunny Hot High Weak No

D2 Sunny Hot High Strong No

D3 Overcast Hot High Weak Yes

D4 Rain Mild High Weak Yes

D5 Rain Cool Normal  Weak Yes

D6 Rain Cool Normal  Strong No

D7 Overcast Cool Normal  Strong Yes

D8 Sunny Mild High Weak No

D9 Sunny Cool Normal  Weak Yes

D10 Rain Mild Normal ~ Weak Yes

DIl Sunny Mild Normal  Strong Yes

D12 Overcast Mild High Strong Yes

D13 Overcast Hot Normal ~ Weak Yes

D14 Rain Mild High Strong No

@ Overall we have:

Gain (S, Wind) ~  0.048,
Gain (S, Temperature) =~ 0.029,
Gain (S, Humidity) ~ 0.151, and
Gain (S, Outlook) ~ 0.247.

= Our choice is ‘Outlook’ as this yields the largest gain.
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Learning with Decision Trees

Hypothesis Space Search in Decision Tree Learning

@ H: the set of all possible
/s decision trees.
@ ID3: simple-to-complex, hill
climbing search starting from
the empty tree.

o Guide: information gain.

/,5% ﬁ% @ “Complete” search space.

o The target is always there.

/ \\\5 @ Maintain only one hypothesis.

Contrast with CANDIDATE-ELIMINATION

A2 algorithm. Disadvantages:
A = VA o Don’t know how many trees
- are consistent.
/ \ @ Cannot pose queries in order
to resolve among competing
hypotheses.
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Learning with Decision Trees

Hypothesis Space Search in Decision Tree Learning

VZ @ No backtracking (ID3).

Disadvantage:
}5 @ Local optima.

@ Statistically-based decisions,

i using all the examples.
T Contrast with CANDIDATE-ELIMINATION
/ \\\~ algorithm. Advantages:

@ Much less sensitive to errors
in individual training
examples.

@ Can be modified to accept

/ \ hypotheses that imperfectly
fit the training data.
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Learning with Decision Trees

Bias in Decision Tree Learning

@ Shorter trees are preferred over longer ones.

@ Select trees that place attributes with highest-information gain closest
to the root.

Note. Finding the shortest tree that fits the data is a computationally hard
problem. In fact, it is computationally hard even to approximate the
solution [2].
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Learning with Decision Trees

Search Bias vs Language Bias

Preference/Search Bias Vs Restriction/Language Bias
ID3 CANDIDATE-ELIMINATION

@ Complete hypothesis space @ Incomplete hypothesis space

@ Search incomp|ete|y @ Search Comp]ete]y

@ Bias is consequence of the @ Bias due to the expressive
ordering of hypotheses during power of H. Not because of the
search. Not because of H. search strategy.

o In general:

@ Learning systems may combine both biases.

@ e.g., use a linear separator as evaluation function on a game; where the
coefficients are tuned using a least-mean-squares approach.
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Learning with Decision Trees

Occam’s Razor

“Nunquam ponenda est pluralitas sin necesitate”
William of Occam (1320 A.D.)
“Entities should not be multiplied beyond necessity ”
Stephen Chak Tornay (1938 A.D.)

“Prefer the simplest hypothesis that fits the data” — Tom Mitchell (1997 A.D.)

@ Fewer short hypotheses (short descriptions) compared to longer ones.
—> Less likely to find by a coincidence a hypothesis that fits the data.

Counterarguments...

@ Be very specific on something complex => Simple solutions are
unlikely to fit the data. So, why not prefer complex ones?

@ The learner may arrive at a different hypothesis because it is using a
different representation internally. Still, both learners justify their
solutions through Occam’s razor principle and may even predict
differently on unseen data.
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(True) Risk and Empirical Risk
Definition 1 (Risk)

Given a hypothesis h € H, a target concept ¢ € C, and an underlying
distribution D, the risk of h is defined by

Rp (h, ¢) = Prxp (h(x) # c(x)) = E [1{h(x) # c(x)}] -

o 1{A} returns 1if the event A holds, o.w. returns 0.

Definition 2 (Empirical Risk)
Given a hypothesis h € H, a target concept ¢ € C, and a sample
S=(x1,...,Xm), the empirical risk of h is defined by

)= g 21 (h(s) # )}
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Overfitting and Pruning

09
0.85
08
0.75 +

07}

Accuracy

0.65 H

06 F On training data —
On test data --—-
0.55 F

0.5 1 L 1 PR, . I L 1
0 10 20 30 40 50 60 70 80 90 100
Size of tree (number of nodes)

Definition 3

Given a hypothesis space H, a hypothesis h € H is said to overfit the
training data S if there exists some alternative hypothesis /' € H, such that

Rs (h,c) < Rs (H,c) but  Rp(h,c)>Rp(H,c).
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Overfitting (cont’d)

Reasons for overfitting.

@ Noise. For example, the teacher makes a mistake and the learner
receives an incorrect label.

@ As a consequence we create a more elaborate tree so that we can fit the
training data better.
o However, we will not generalize well on unseen data.

° , especially when we have few training data.

Two ideas to overcome overfitting.
@ Stop growing the tree earlier.
@ Not easy to say when to stop.

© Allow overfitting and prune the tree later.

Which criterion should determine the ‘correct’ final tree?
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Tuning our Model in Order to Reduce Overfitting

Three approaches.
@ [Most common approach] Use a training set and a validation set.
@ Validation set acts as a safety net against overfitting the spurious
characteristics of the training set.
o Typically the training set is 3-4 times larger than the validation set.
© Use a statistical test to predict whether expanding a node of a decision
tree will improve the performance over the entire distribution, or only
on the training set; e.g., [5].
© Apply the principle; i.e., try to minimize a
complexity-theoretic notion on encoding a hypothesis that we
generate; e.g., [3, 8].
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Reduced-Error Pruning

Pruning. Pruning a node consists of:
@ Removing subtree rooted at that node.
© Making the node a leaf.
@ Assign most common classification of examples affiliated with that

node.

Algorithm (Quinlan; [7])
@ Each node is candidate for pruning.
@ A node is removed only if the pruned tree behaves no worse than the
original (clearly in the validation set).
@ ‘Greedy’: remove the node that increases the accuracy the most (again,
over the validation set).

@ Pruning stops when all candidate operations are harmful.
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Rule Post-Pruning (C4.5)

Algorithm (Quinlan; [6, 7])
@ Infer the decision tree and allow overfitting to occur.

Convert the tree into a set of rules; one rule for each path root ~~ leaf
node.

o
© Prune (generalize) each rule by removing any preconditions that result
in improving the estimated accuracy.

o

Sort the pruned rules by their estimated accuracy, and consider them
in this sequence when classifying subsequent instances.

Say we have the following rule:

IF (Outlook = Sunny) A (Humidity = High)
THEN PlayTennis = No

Then, we may delete either one of (Outlook = Sunny) or (Outlook = Sunny).
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Benefits of Rule Post-Pruning

@ Different contexts in which a decision node is used.
@ In some paths it is retained and it is removed in some other paths.
@ Contrast with removing the node completely.

© Removes the distinction of pruning nodes near the root and those near
the leaves.

© Rules improve readability.
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Handling Continuous-Valued Attributes

@ For a continuous-valued attribute A, we consider a threshold ¢ and
then create the Boolean attribute A; which is TRUE if A < t and FALSE
otherwise.

@ How do we select the best threshold t?

Algorithm.
@ Sort the examples according to the attribute A
@ Identify adjacent examples that differ in their target classification.
@ Introduce thresholds at the average values of the pairs that are adjacent
and the classification is different.
© Test these points and pick the one that produces the greatest
information gain.

Temperature: 40 48 60 72 80 . 90
PlayTennis: No No Yes. Yes Yes No

Candidate thresholds: t; = “S—Jga): 54 and t, = W: 85.
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Learning with Decision Trees

Alternative Measures for Selecting Attributes

Gain (-, -) has a natural bias: favors attributes with many values over
attributes with fewer values.
@ Extreme example: attribute ‘Day’.
Creates a very broad tree of depth 1 and predicts correctly.
However, this is going to be a poor predictor.
@ Problem: many possible values = small sets of examples along each
path.
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Gain Ratio as an Alternative to Information Gain

Alternative to Information Gain: Gain Ratio. Let A be an attribute that
takes k different values. Then, B

Si Si
Splitinformation (S, A) = — Z ||Sl|| og, ||S’||
i=1
@ Splitinformation (-, -) is the entropy of S with respect to the values of A
- not with respect to the labels!
The GainRatio is defined to be:
: , Gain (S, A)
GainRatio (5,A) = — : .
Splitinformation (S, A)
Issue. Denominator can be 0 or very small when |S;| ~ |S|. Workarounds:
@ First compute Gain (S, A) for each attribute A. Then consider only the
attributes that have above average gain and apply GainRatio (-, -) there.

@ Distance-based heuristic comparing the data partition and the perfect
partition.
Other Alternatives to Information Gain also Exist.
Computational Learning Theory
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Handling Training Examples with Missing Attribute Values

@ We may be missing the result of a lab test in a medical domain; e.g.,

blood test.

A attributes with known values
(O, ), c(x))

@ How can we consider a split around A if we are missing values as in
this example?
@ How can we compute Gain (S, A)?

Solutions to assign a value to A(x).

@ Assign the most common value among the examples associated with
the particular node.

@ Assign the most common value among the examples associated with
the particular node, for which the prediction is ¢(x).

© Fractional examples [6]; assign a probability to each possible value
A(x) based on the frequencies of the observed values in the examples
associated with the particular node.
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Some Last Remarks on Decision Trees

Attributes with Differing Costs.
@ One can also deal with attributes that have different costs when we
want to know their values.
@ Measuring patient’s temperature is cheap (no monetary cost, no patient
discomfort)
@ A blood test on the other hand costs money and it is not as comfortable.
@ We would like to work with decision trees that work with low-cost
attributes and only use high-cost attributes if necessary.

Some ideas:
(Gain (S, A))?
Cost(A) '’
or, _
ZGam(s,A) _q

9
(Cost(A) + 1)*
where w € [0, 1].
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