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Learning with Decision Trees

What Decision Trees are?

The material is based primarily on Tom Mitchell’s book [4, Ch. 3]

We can also view the decision tree in disjunctive normal form (DNF).

(Outlook = Sunny ∧ Humidity = Low)

∨ (Outlook = Overcast)

∨ (Outlook = Rain ∧ Wind = Weak)
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Learning with Decision Trees

How do we Construct a Decision Tree?

Q: Which a�ribute should we put in the root?

Our answer is based on the entropy function.

Entropy. The entropy is calculated as shown below.

If we have two classes ({0, 1}), then:

Entropy (S) ≡ −p0 log2 p0 − p1 log2 p1

= −p0 log2 p0 − (1− p0) log2(1− p0)

= −(1− p1) log2(1− p1)− p1 log2 p1
p1

positive
examples

p0

negative
examples

da
ta
se
t S
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Learning with Decision Trees

How do we Construct a Decision Tree? (cont’d)

In general, if we have k classes, the entropy of S

Entropy (S) ≡ −
k∑

i=1

pi log2 pi .

If pi = 0, then set pi log2 pi = 0 (consistent with limp→0+ p log2 p)

Ultimately we care about the Information Gain.

Gain (S,A) ≡ Entropy (S)−
∑

v∈Values(A)

|Sv |

|S|
· Entropy (Sv)

Figure: figure here
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How do we Construct a Decision Tree? (cont’d)

A

A
=
a 1

A
=

a 2

A
=
a
3

S

S1 S2 S3

S = S1 ∪ S2 ∪ S3

1 Associate training examples to
each node that we construct

At the root we assign all the
training examples S

2 Iterate over the a�ributes that
we have not used and identify
which a�ribute yields the
largest information gain.

Use that a�ribute A as a test
for that node.

3 The recursive process stops
when a node becomes “pure”.

pure node: all the examples
associated with the node
have the same label.
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ID3 Algorithm
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Learning with Decision Trees

Comments

Problems Appropriate for Decision Trees

Disjunctive descriptions may be required

Training data may contain errors

Training data may be missing a�ribute values

Bias in Decision Trees

Shorter trees are preferred

Select trees that place a�ributes with highest information gain closest

to the root.

No backtracking.

Origins of Algorithms

ID3 (Iterative Dichotomizer 3) – due to�inlan [5].

CART (Classification and Regression Trees) – due to Breiman [1].
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Learning with Decision Trees

Example: Play Tennis

What is the information gain if

we use the a�ribute Wind to

split this set of training

examples?

Values(Wind) = {Weak, Strong}

Sweak = [6+©, 2−©]

Sstrong = [3+©, 3−©]
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Learning with Decision Trees

Example: Play Tennis

Based on this decomposition we can calculate the following.

Entropy (S) = − 9
14 lg

9
14 −

5
14 lg

5
14 ≈ 0.4098+ 0.5305 = 0.9403.

Entropy (SWeak) = − 6
8 lg

6
8 −

2
8 lg

2
8 ≈ 0.3113+ 0.5 = 0.8113.

Entropy
(
SStrong

)
= − 3

6 lg
3
6 −

3
6 lg

3
6 = 0.5+ 0.5 = 1.
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Learning with Decision Trees

Example: Play Tennis

Gain (S,Wind) = Entropy (S)−
∑

v∈{Weak, Strong}

|Sv |

|S|
Entropy (Sv)

= 0.9403−
8

14
· 0.8113−

6

14
· 1 ≈ 0.04813

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 12 / 32



Learning with Decision Trees

Example: Play Tennis

Overall we have:




Gain (S,Wind) ≈ 0.048,

Gain (S, Temperature) ≈ 0.029,

Gain (S,Humidity) ≈ 0.151, and

Gain (S,Outlook) ≈ 0.247.

=⇒ Our choice is ‘Outlook’ as this yields the largest gain.
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Hypothesis Space Search in Decision Tree Learning

H: the set of all possible

decision trees.

ID3: simple-to-complex, hill
climbing search starting from
the empty tree.

Guide: information gain.

“Complete” search space.

The target is always there.

Maintain only one hypothesis.
Contrast with Candidate-Elimination

algorithm. Disadvantages:

Don’t know how many trees
are consistent.
Cannot pose queries in order
to resolve among competing
hypotheses.
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Learning with Decision Trees

Hypothesis Space Search in Decision Tree Learning

No backtracking (ID3).
Disadvantage:

Local optima.

Statistically-based decisions,

using all the examples.
Contrast with Candidate-Elimination

algorithm. Advantages:

Much less sensitive to errors
in individual training
examples.

Can be modified to accept
hypotheses that imperfectly
fit the training data.
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Learning with Decision Trees

Bias in Decision Tree Learning

Shorter trees are preferred over longer ones.

Select trees that place a�ributes with highest-information gain closest

to the root.

Note. Finding the shortest tree that fits the data is a computationally hard

problem. In fact, it is computationally hard even to approximate the

solution [2].

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 16 / 32



Learning with Decision Trees

Search Bias vs Language Bias

Preference/Search Bias vs Restriction/Language Bias

ID3

Complete hypothesis space

Search incompletely

Bias is consequence of the

ordering of hypotheses during

search. Not because of H.

Candidate-Elimination

Incomplete hypothesis space

Search completely

Bias due to the expressive

power of H. Not because of the

search strategy.

In general: we prefer search bias over language bias.

Learning systems may combine both biases.

e.g., use a linear separator as evaluation function on a game; where the
coefficients are tuned using a least-mean-squares approach.
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Occam’s Razor

“Nunquam ponenda est pluralitas sin necesitate”

William of Occam (1320 A.D.)

“Entities should not be multiplied beyond necessity ”

Stephen Chak Tornay (1938 A.D.)

“Prefer the simplest hypothesis that fits the data” – Tom Mitchell (1997 A.D.)

Fewer short hypotheses (short descriptions) compared to longer ones.

=⇒ Less likely to find by a coincidence a hypothesis that fits the data.

Counterarguments...

1 Be very specific on something complex =⇒ Simple solutions are

unlikely to fit the data. So, why not prefer complex ones?

2 The learner may arrive at a different hypothesis because it is using a

different representation internally. Still, both learners justify their

solutions through Occam’s razor principle and may even predict

differently on unseen data.
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(True) Risk and Empirical Risk

Definition 1 (Risk)

Given a hypothesis h ∈ H, a target concept c ∈ C, and an underlying

distribution D, the risk of h is defined by

RD (h, c) = Prx∼D (h(x) 6= c(x)) = E
x∼D

[1 {h(x) 6= c(x)}] .

1 {A} returns 1 if the event A holds, o.w. returns 0.

Definition 2 (Empirical Risk)

Given a hypothesis h ∈ H, a target concept c ∈ C, and a sample

S = (x1, . . . , xm), the empirical risk of h is defined by

R̂S (h, c) =
1

m
·

m∑

i=1

1 {h(xi) 6= c(xi)} .
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Learning with Decision Trees

Overfi�ing and Pruning

Definition 3

Given a hypothesis spaceH, a hypothesis h ∈ H is said to overfit the

training data S if there exists some alternative hypothesis h′ ∈ H, such that

R̂S (h, c) ≤ R̂S
(
h′, c

)
but RD (h, c) > RD

(
h′, c

)
.
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Learning with Decision Trees

Overfi�ing (cont’d)

Reasons for overfi�ing.

Noise. For example, the teacher makes a mistake and the learner
receives an incorrect label.

As a consequence we create a more elaborate tree so that we can fit the
training data be�er.
However, we will not generalize well on unseen data.

Coincidental regularities, especially when we have few training data.

Two ideas to overcome overfi�ing.

1 Stop growing the tree earlier.

Not easy to say when to stop.

2 Allow overfi�ing and prune the tree later.

Which criterion should determine the ‘correct’ final tree?
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Tuning our Model in Order to Reduce Overfi�ing

Three approaches.

1 [Most common approach] Use a training set and a validation set.

Validation set acts as a safety net against overfi�ing the spurious
characteristics of the training set.
Typically the training set is 3-4 times larger than the validation set.

2 Use a statistical test to predict whether expanding a node of a decision

tree will improve the performance over the entire distribution, or only

on the training set; e.g., [5].

3 Apply theMinimum Description Length principle; i.e., try to minimize a

complexity-theoretic notion on encoding a hypothesis that we

generate; e.g., [3, 8].
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Reduced-Error Pruning

Pruning. Pruning a node consists of:

1 Removing subtree rooted at that node.

2 Making the node a leaf.

3 Assign most common classification of examples affiliated with that

node.

Algorithm (�inlan; [7])

Each node is candidate for pruning.

A node is removed only if the pruned tree behaves no worse than the

original (clearly in the validation set).

‘Greedy’: remove the node that increases the accuracy the most (again,

over the validation set).

Pruning stops when all candidate operations are harmful.

D. Diochnos (OU - CS) Computational Learning Theory University of Oklahoma 23 / 32



Learning with Decision Trees

Rule Post-Pruning (C4.5)

Algorithm (�inlan; [6, 7])

1 Infer the decision tree and allow overfi�ing to occur.

2 Convert the tree into a set of rules; one rule for each path root leaf

node.

3 Prune (generalize) each rule by removing any preconditions that result

in improving the estimated accuracy.

4 Sort the pruned rules by their estimated accuracy, and consider them

in this sequence when classifying subsequent instances.

Say we have the following rule:

IF (Outlook = Sunny) ∧ (Humidity = High)

THEN PlayTennis = No

Then, we may delete either one of (Outlook = Sunny) or (Outlook = Sunny).
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Benefits of Rule Post-Pruning

1 Different contexts in which a decision node is used.

In some paths it is retained and it is removed in some other paths.
Contrast with removing the node completely.

2 Removes the distinction of pruning nodes near the root and those near

the leaves.

3 Rules improve readability.
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Handling Continuous-Valued A�ributes

For a continuous-valued a�ribute A, we consider a threshold t and

then create the Boolean a�ribute At which is True if A < t and False

otherwise.

How do we select the best threshold t?

Algorithm.

1 Sort the examples according to the a�ribute A
2 Identify adjacent examples that differ in their target classification.

Introduce thresholds at the average values of the pairs that are adjacent
and the classification is different.

3 Test these points and pick the one that produces the greatest

information gain.

Candidate thresholds: t1 =
48+60

2 = 54 and t2 =
80+90

2 = 85.
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Alternative Measures for Selecting A�ributes

Gain (·, ·) has a natural bias: favors a�ributes with many values over

a�ributes with fewer values.

Extreme example: a�ribute ‘Day’.

Creates a very broad tree of depth 1 and predicts correctly.

However, this is going to be a poor predictor.

Problem: many possible values⇒ small sets of examples along each

path.
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Gain Ratio as an Alternative to Information Gain

Alternative to Information Gain: Gain Ratio. Let A be an a�ribute that

takes k different values. Then,

SplitInformation (S,A) ≡ −
k∑

i=1

|Si|

|S|
log2

|Si|

|S|

SplitInformation (·, ·) is the entropy of S with respect to the values of A

– not with respect to the labels!

The GainRatio is defined to be:

GainRatio (S,A) ≡
Gain (S,A)

SplitInformation (S,A)
.

Issue. Denominator can be 0 or very small when |Si| ≈ |S|. Workarounds:

First compute Gain (S,A) for each a�ribute A. Then consider only the

a�ributes that have above average gain and apply GainRatio (·, ·) there.

Distance-based heuristic comparing the data partition and the perfect

partition.

Other Alternatives to Information Gain also Exist.
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Handling Training Examples with Missing A�ribute Values

We may be missing the result of a lab test in a medical domain; e.g.,

blood test.

((
A

�,

a�ributes with known values︷ ︸︸ ︷
. . . . . . . . . . . . . . . . . . . . . . . . . . .)︸ ︷︷ ︸

instance x is missing a value for A

, c(x))

How can we consider a split around A if we are missing values as in
this example?

How can we compute Gain (S,A)?

Solutions to assign a value to A(x).
1 Assign the most common value among the examples associated with

the particular node.
2 Assign the most common value among the examples associated with

the particular node, for which the prediction is c(x).
3 Fractional examples [6]; assign a probability to each possible value

A(x) based on the frequencies of the observed values in the examples

associated with the particular node.
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Some Last Remarks on Decision Trees

A�ributes with Differing Costs.

One can also deal with a�ributes that have different costs when we
want to know their values.

Measuring patient’s temperature is cheap (no monetary cost, no patient
discomfort)
A blood test on the other hand costs money and it is not as comfortable.

We would like to work with decision trees that work with low-cost

a�ributes and only use high-cost a�ributes if necessary.

Some ideas:
(Gain (S,A))2

Cost(A)
,

or,

2Gain(S,A) − 1

(Cost(A) + 1)w
,

where w ∈ [0, 1].
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