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Why Statistical Queries?

SQs have many connections to a variety of modern topics, including
to evolvability, differential privacy, adaptive data analysis, and deep
learning. SQ has become both an important tool and remains a
foundational topic with many important questions.

Defined in:
Micheal Kearns. Efficient noise-tolerant learning from statistical
queries. Journal of the ACM. 45 (6), pp. 983–1006. 1998.
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Why Statistical Queries?

SQs have many connections to a variety of modern topics, including
to evolvability, differential privacy, adaptive data analysis, and deep
learning. SQ has become both an important tool and remains a
foundational topic with many important questions.

Defined in:
Micheal Kearns. Efficient noise-tolerant learning from statistical
queries. Journal of the ACM. 45 (6), pp. 983–1006. 1998.

Independently by:
Shai Ben-David, Alon Itai, Eyal Kushilevitz. Learning by Distances.
Information and Computation 117(2), pp. 240-250. 1995.
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SQ as a restriction of PAC

Definition (efficient PAC learning)

Let C be a class of boolean functions c : X → {−1, 1}. C is
efficiently PAC-learnable if there exists an algorithm L such that for
every c ∈ C , any probability distribution DX over X , and any
0 < ε, δ < 1, algorithm L takes a labeled sample S of size
m = poly(1/ε, 1/δ, n, |c |) froma D, and in time polynomial in m,
outputs a hypothesis h for which PrS∼D [errD(h) ≤ ε] ≥ 1− δ.

an = |x |

SQ learning is a variant PAC, which gives the learner access to an
oracle instead of labeled examples.
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SQ oracle

Definition (statistical query)

A statistical query is a pair (q, τ) with

q : a function q : X × {−1, 1} → {−1, 1}.
τ : a tolerance parameter τ ≥ 0.

Definition (statistical query oracle)

the statistical query oracle SQ(q, τ) returns a value in the range:

[Ex∼D [q(x , c(x)]− τ,Ex∼D [q(x , c(x)] + τ ] .
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Efficient SQ learning

Definition (efficient SQ learning)

Let C be a class of boolean functions c : X → {−1, 1}. C is
efficiently SQ-learnable if there exists an algorithm L such that for
every c ∈ C , any probability distribution D, and any ε > 0, there is a
polynomial p(·, ·, ·) such that

L makes at most p(1/ε, n, |c |) calls to the SQ oracle

the smallest τ that L uses satisfies 1
τ ≤ p(1/ε, n, |c |), and

the queries q are evaluable in time p(1/ε, n, |c |),

and L outputs a hypothesis h satisfying errD(h) ≤ ε.

Note this definition has no failure parameter δ.
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SQ learnability implies PAC learnability

SQ is a natural restriction of PAC.

Observation

If a class of functions is efficiently SQ-learnable, then it is efficiently
learnable in the PAC model.

Proof.

You can simulate an SQ oracle in the PAC model by drawing

O
(

log(k/δ)
τ2

)
samples for each of the k statistical queries, and by the

Hoeffding bound, the simulation will fail with probability < δ.
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SQ learnability implies noisy PAC learnability

SQ-learnability is also related to learnability under the classification
noise model of Angluin and Laird (’87).

Definition (classification noise)

A PAC learning algorithm under random classification noise (η-PAC),
aka “white-label noise,” must meet the PAC requirements, but the
label of each training sample is flipped with independently with
probability η, for 0 ≤ η < 1/2. The sample size and running time
also include a polynomial dependence on 1/(1− 2η).
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SQ learnability implies noisy PAC learnability

Theorem (Kearns ’98)

If a class of functions is efficiently SQ-learnable, then it is efficiently
learnable in the noisy PAC model.

Proof sketch.

1 Draw enough examples, poly
(

1
τ ,

1
1−2η , log 1

δ

)
suffice.

2 Separate data into part on which q is affected by noise and part
that’s not.

3 Estimate q on both parts, then “undo” noise on noisy part.

e.g. for the noisy part, P = (Pη − η)/(1− 2η).
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SQ Learnability Implies Noisy PAC Learnability – proof

Theorem (Kearns ’98)

If a class of functions is efficiently SQ-learnable, then it is efficiently
learnable in the PAC model under classification noise.

So, the SQ framework gives us a way to design algorithms that are
also noise-tolerant.

SQ learnability also gives results for learning in Valiant’s (’85)
malicious noise model.

Theorem (Aslam and Decatur ’98)

If a class of functions is efficiently SQ-learnable, then it is efficiently
PAC learnable under malicious noise with noise rate η = Õ(ε).
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Correlational and honest queries

Bshouty and Feldman (’01) defined correlational statistical queries:

Definition (correlational statistical query oracle)

Given a function h = X → {−1, 1} and a tolerance parameter τ , the
correlational statistical query oracle CSQ(h, τ) returns a value within
τ of ED [h(x)c(x)].

Note CSQ = “Learning by Distances” (Ben-David, Itai, Kushilevitz ’95).

Yang (’05) defined honest statistical queries:

Definition (honest statistical query oracle)

Given function q : X × {−1, 1} → {−1, 1} and sample size s, the
honest statistical query oracle HSQ(q, s) draws x1, . . . , xs ∼ D and

returns 1
s

∑s
i=1 q(xi , c(xi )).
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Limitations of SQ algorithms

A quantity called the statistical query dimension (Blum, Furst,
Jackson, Kearns, Mansour, Rudich ’94) controls the complexity of
statistical query learning.

Definition (statistical query dimension)

For a concept class C and distribution D, the statistical query
dimension of C with respect to D, denoted SQ-DIMD(C ), is the
largest number d such that C contains d functions f1, f2, . . . , fd such
that for all i 6= j ,

∣∣〈fi , fj〉D∣∣ ≤ 1/d . Note: 〈fi , fj〉D = ED [fi · fj ].

Sometimes, we leave out the distribution, in which case we mean:

SQ-DIM(C ) = max
D∈D

SQ-DIMD(C ).
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Theorem (Blum, Furst, Jackson, Kearns, Mansour, Rudich ’94)

Let C be a concept class and let d = SQ-DIMD(C ). Then any SQ
learning algorithm that uses a tolerance parameter lower bounded by
τ > 0 must make at least (dτ2 − 1)/2 queries to learn C with
accuracy at least τ . In particular, when τ = 1/d1/3, this means
(d1/3 − 1)/2 queries are needed.

Corollary

Let C be a class with SQ-DIMD(C ) = ω(nk) for all k, then C is not
efficiently SQ-learnable under D.
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Theorem (Blum, Furst, Jackson, Kearns, Mansour, Rudich ’94)

Let C be a concept class and let d = SQ-DIMD(C ). Then any SQ
CSQ learning algorithm that uses a tolerance parameter lower
bounded by τ > 0 must make at least (dτ2 − 1)/2 queries to learn C
with accuracy at least τ . In particular, when τ = 1/d1/3, this means
(d1/3 − 1)/2 queries are needed.

Proof.

The original proof is a bit too technical to present here, so instead
we’ll see a clever, short proof of this lower bound for CSQs.
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proof (Szörényi ’09).

Assume f1, . . . , fd realize the SQ-DIM. Let h be a query and
A = {i ∈ [d ] : 〈fi , h〉 ≥ τ}. Then by Cauchy-Schwartz, we have〈

h,
∑
i∈A

fi

〉2

≤

∣∣∣∣∣
∣∣∣∣∣∑
i∈A

fi

∣∣∣∣∣
∣∣∣∣∣
2

=
∑
i ,j∈A
〈fi , fj〉 ≤

∑
i∈A

(
1 +
|A| − 1

d

)
,

so
〈
h,
∑

i∈A fi
〉2 ≤ |A|+ |A|2

d . But by definition of A, we also have〈
h,
∑

i∈A fi
〉
≥ |A|τ . By algebra, |A| ≤ d/(dτ2 − 1), and the same

bound holds for A′ defined w.r.t. correlation ≤ −τ .

So no matter what h, an answer of 0 to CSQ(h, τ) eliminates at most
d/(|A|+ |A′|) = (dτ2 − 1)/2 functions.
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Perhaps surprisingly, for distribution-specific learning,
CSQ-learnability is equivalent to SQ-learnability.

Lemma (Bshouty, Feldman ’02)

Any SQ can be answered by asking two SQs that are independent of
the target and two CSQs.

ED [q(x , c(x)] = ED

[
q(x ,−1)

1− c(x)

2
+ q(x , 1)

1 + c(x)

2

]
=

1

2
ED [q(x , 1)c(x)]− 1

2
ED [q(x ,−1)c(x)]

+
1

2
ED [q(x , 1)] +

1

2
ED [q(x ,−1)].

On the other hand, Feldman (2011) showed that CSQs are strictly
weaker than SQs for distribution-independent learning. E.g.
half-spaces are not distribution-independently CSQ learnable, but are
SQ learnable.
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Theorem (Blum et al. ’94; Szörényi ’09)

Let C be a concept class and let d = SQ-DIM(C ). Then any SQ (∴
CSQ) learning algorithm that uses a tolerance parameter lower
bounded by τ > 0 must make at least (dτ2 − 1)/2 queries to learn C
with accuracy at least τ . In particular, when τ = 1/d1/3, this means
(d1/3 − 1)/2 queries are needed.

Theorem (Yang ’05; Feldman, Grigorescu, Reyzin, Vempala, Xiao ’17)

Let C be a concept class and let d = SQ-DIM(C ). Then any HSQ
learning algorithm must use a total sample complexity at least Ω(d)
to learn C (to constant accuracy and probability of success).
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Classes that are not SQ learnable

parity functions, χc(x) = (−1)c·x (SQ-DIM = 2n)

known from orthogonality of Fourier characters under the uniform
distribution; see O’Donnell (’09)

parities are PAC-learnable, so SQ ( PAC
this implies: VC-DIM(C ) ≤ SQ-DIM(C ), but SQ-DIM(C ) can
also be exponentially large in VC-DIM(C ) (Blum, Furst, Jackson,
Kearns, Mansour, Rudich ’94)
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Classes that are not SQ learnable

parity functions, χc(x) = (−1)c·x (SQ-DIM = 2n)

decision trees (SQ-DIM ≥ nc log n)
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Classes that are not SQ learnable

parity functions, χc(x) = (−1)c·x (SQ-DIM = 2n)

decision trees (SQ-DIM ≥ nc log n)

DNF (SQ-DIM ≥ nc log n)
(x1 ∧ x2 ∧ x3) ∨ (x̄1 ∧ x̄2 ∧ x̄3) ∨ (x̄1 ∧ x2 ∧ x̄3) ∨ (x̄1 ∧ x̄2 ∧ x3)
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Classes that are not SQ learnable

parity functions, χc(x) = (−1)c·x (SQ-DIM = 2n)

decision trees (SQ-DIM ≥ nc log n)

DNF (SQ-DIM ≥ nc log n)

finite automata (SQ-DIM ≥ 2cn)

etc.

even uniformly random decision trees, DNF, and automata
(Angluin, Eisenstat, Kontorovich, Reyzin ’10)

Note that only the first of these are known to be PAC learnable.
We’ll come back to this later.
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Weak learning

Theorem

Let C be a concept class and let SQ-DIMD(C ) = poly(n), then C is
weakly learnable under D.

Proof.

Let S = {f1, . . . fd} ⊆ C realize the SQ bound. For each fi ∈ S , query
its correlation with c∗. At least one has a correlation > 1/d
(otherwise we could add c∗ to S , contradicting S ’s maximality).

Because of this observation, SQ-DIM is sometimes referred to as the
weak statistical query dimension.
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Strong vs weak SQ learning

Schapire (’90) showed that “weak learning” = “strong learning” in
the PAC setting. Is the same true in the SQ setting?

Yes! Aslam and Decator (’98) showed SQ boosting is possible.

Theorem (Aslam, Decatur ’98)

Let d = SQ-DIM(C ), then C is SQ-learnable to error ε > 0 using
O(d5 log2 1

ε ) queries with tolerances bounded by τ = Ω( ε
3d ).

But this is for distribution independent learning.
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strong statistical query dimension

In the distribution-dependent case, (weak) SQ dimension does not
characterize strong learnability.

For this reason, there exists the notion of strong SQ dimension
(Simon ’07; Feldman ’09; Szörényi ’09).

Definition (strong statistical query dimension)

For a concept class C and distribution D, let the strong statistical
query dimension SSQ-DIMD(C , γ) be the largest d such that some
f1, . . . , fd ∈ C fulfill

| 〈fi , fj〉D | ≤ γ for 1 ≤ i < j ≤ d , and

| 〈fi , fj〉D − 〈fk , f`〉D | ≤ 1/d for 1 ≤ i < j ≤ d , 1 ≤ k < ` ≤ d .
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Strong SQ learning

Definition (strong statistical query dimension)

For a concept class C and distribution D, let the strong statistical
query dimension SSQ-DIMD(C , γ) be the largest d such that some
f1, . . . , fd ∈ C fulfill

| 〈fi , fj〉D | ≤ γ for 1 ≤ i < j ≤ d , and

| 〈fi , fj〉D − 〈fk , f`〉D | ≤ 1/d for 1 ≤ i < j ≤ d , 1 ≤ k < ` ≤ d .

Roughly, SSQ-DIMD(C , 1− ε), controls the complexity of learning C
to error ε under D.

For ε = 1/10, the gap between strong and weak SQ dimension can be
as large as possible, e.g. consider F = {v1 ∨ χc | c ∈ {0, 1}n}; then
SQ-DIMU(F) = 0 but SSQ-DIMU(F , 9/10) = 2n.
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Strong SQ learning

Definition (strong statistical query dimension)

For a concept class C and distribution D, let the strong statistical
query dimension SSQ-DIMD(C , γ) be the largest d such that some
f1, . . . , fd ∈ C fulfill

| 〈fi , fj〉D | ≤ γ for 1 ≤ i < j ≤ d , and

| 〈fi , fj〉D − 〈fk , f`〉D | ≤ 1/d for 1 ≤ i < j ≤ d , 1 ≤ k < ` ≤ d .

Roughly, SSQ-DIMD(C , 1− ε), controls the complexity of learning C .

Feldman (’12) showed that a variant of SSQ-DIM captures the
complexity of agnostic learning of a hypothesis class, which implies
that even agnostically learning conjunctions is not possible with
statistical queries
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PAC, η-PAC, and SQ

We’ve seen the following:

efficient SQ ⊆ efficient η-PAC ⊆ efficient PAC

parity functions are efficiently PAC learnable, but not efficiently
SQ learnable.

Are parity functions learnable in η-PAC?
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Noisy parity

Are parity functions learnable in η-PAC?

Blum, Kalai, and Wasserman (’00) gave a 2n/ log n algorithm for
learning parities in η-PAC.1

This at least means that the class of parities on the first
k = log n log log n bits are efficiently learnable in η-PAC, but not
efficiently SQ learnable.

This question is the (notorious) “noisy parity problem” (LPN).

It is assumed there is no efficient algorithm. Variants have been
proposed for public-key cryptography (Peikart ’14).

Some progress, but far from efficient algorithms. (Blum, Kalai,
Wasserman ’00; Grigorescu, Reyzin, Vempala ’11; Valiant ’12)

1for η constant
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SQ algorithms

On the other hand, we have many methods that can be implemented
via the SQ oracle:

gradient descent (Robbins, Monro ’51)

EM (Dempster, Laird, Rubin ’77)

SVM (Cortes, Vapnik ’95; Mitra, Murthy, Pal ’04)

linear/convex optimization (Dunagan, Vempala ’08)

MCMC (Tanner, Wong ’87; Gelfand, Smith ’90)

simulated annealing (Kirkpatrick, Gelatt, Vecchi ’83; C̆erný ’85)

etc., etc.

pretty much everything, incl. PCA, ICA, Näıve Bayes, neural net
algorithms, k-means (Blum, Dwork, McSherry, Nissim ’05)

39 / 86



An Introduction to Statistical Query (SQ) Learning
Bounds for SQ algorithms

SQ and Learnability
Applications

Complexity of learning
Where do practical algorithms fit in?

SQ algorithms

On the other hand, we have many methods that can be implemented
via the SQ oracle:

gradient descent (Robbins, Monro ’51)

EM (Dempster, Laird, Rubin ’77)

SVM (Cortes, Vapnik ’95; Mitra, Murthy, Pal ’04)

linear/convex optimization (Dunagan, Vempala ’08)

MCMC (Tanner, Wong ’87; Gelfand, Smith ’90)

simulated annealing (Kirkpatrick, Gelatt, Vecchi ’83; C̆erný ’85)
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Non-SQ algorithms

In fact, we basically have only a couple non-SQ algorithms

1 Gaussian elimination

2 hashing/bucketing

Most everything else seems to be SQ.

This helps explain why we don’t have algorithms for many natural
classes, including decision trees and DNF.

To tackle these, we need to invent fundamentally different techniques!
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So, what to do for e.g. decision trees?
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Introduction to optimization over distributions

Statistical algorithms apply to optimization problems over an
unknown distribution D. These are normally solved by working over a
sample from D.

As a motivating example, consider the problem of finding the
direction that maximizes the r th moment over a distribution D,

argmaxu:|u|=1Ex∼D [(u · x)r ].

(This is easy for r = 1 and r = 2 and probably hard otherwise.)
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Introduction to statistical algorithms

Feldman, Grigorescu, Reyzin, Vempala, and Xiao (’17) extended SQs
to outside learning. Any problem with instances coming from a
distribution D (over X ) can be analyzed via a “statistical oracle.”

Let q : X → {0, 1}, τ > 0 a tolerance, and t > 0 a sample size.

Definition (statistical oracles)

STAT(q, τ): returns a value in: [µ− τ, µ+ τ ],

1-STAT(q): draws 1 sample, x ∼ D, and returns q(x),

VSTAT(q, t): returns a value [µ− τ ′, µ+ τ ′],

where µ = Ex∼D [q(x)] and τ ′ = max
{

1/t,
√
µ(1− µ)/t

}
.
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Statistical dimension

Definition (pairwise correlation of two distributions)

Define the pairwise correlation of D1, D2 with respect to D is

χD(D1,D2) =

∣∣∣∣〈D1

D
− 1,

D2

D
− 1

〉
D

∣∣∣∣ .
Note that χD(D1,D1) = χ2(D1,D), the chi-squared distance between
D1 and D (Pearson ’00).

E.g., let X = {0, 1}n and Dc1 ,Dc2 be uniform over the examples
labeled −1 by χc1 , χc2 resp. It turns out χU(Dc1 ,Dc2) = 0.
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Let us compute χU(D010,D011) =
〈
D010
U − 1, D011

U − 1
〉
U

for n = 3.

X U D010 D011
D010
U

D011
U

D010
U − 1 D011

U − 1

000 1/8 0 0 0 0 -1 -1
001 1/8 0 1/4 0 2 -1 1
010 1/8 1/4 1/4 2 2 1 1
011 1/8 1/4 0 2 0 1 -1
100 1/8 0 0 0 0 -1 -1
101 1/8 0 1/4 0 2 -1 1
110 1/8 1/4 1/4 2 2 1 1
111 1/8 1/4 0 2 0 1 -1〈

D010
U − 1, D011

U − 1
〉
U

= (−1)(−1)
8 + (−1)(1)

8 + (1)(1)
8 + (1)(−1)

8

+ (−1)(−1)
8 + (−1)(1)

8 + (1)(1)
8 + (1)(−1)

8
= 0

47 / 86



An Introduction to Statistical Query (SQ) Learning
Bounds for SQ algorithms

SQ and Learnability
Applications

Optimization and search over distributions
Evolvability
Differential privacy and adaptive data analysis
Other applications

Average correlation

Definition (pairwise correlation of two distributions)

Define the pairwise correlation of D1, D2 with respect to D is

χD(D1,D2) =

∣∣∣∣〈D1

D
− 1,

D2

D
− 1

〉
D

∣∣∣∣ .
Definition (average correlation of a set of distributions)

The average correlation of a set of distributions D′ relative to D is

ρ(D′,D) =
1

|D′|2
∑

D1,D2∈D′
χD(D1,D2).
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Definition (statistical dimension with average correlation)

For γ̄ > 0, a domain X , a set of distributions D over X and a
reference distribution D over X , the statistical dimension of D
relative to D with average correlation γ̄ is defined to be the largest
value d such that for any subset D′ ⊆ D for which |D′| ≥ D/d , we
have ρ(D′,D) ≤ γ̄. This is denoted SDAD(D, γ̄).

For a search problem Z over distributions, we use: SDA(Z, γ̄)

Later strengthened to use discrimination norm (Feldman, Perkins, Vempala ’15)

and then extended to “Randomized Statistical Dimension” (Feldman ’17).

Intuitively, largest such d for which 1/d fraction of the set of
distributions has low pairwise correlation is the statistical dimension.
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Theorem (Feldman, Grigorescu, Reyzin, Vempala, Xiao ’17)

Let X be a domain and Z be a search problem over a class of
distributions D over X . For γ̄ > 0, let d = SDA(Z, γ̄). To solve Z
with probability ≥ 2/3, any SQ algorithm requires at least:

1 d calls to VSTAT(. , c1/γ̄)

2 min(d/4, c2/γ̄) calls to 1-STAT(.)

3 d calls to STAT(. , c3
√
γ̄).

Szörényi’s (’09) proof of the SQ-DIM lower bound for CSQs gives
intuition. Recall, for query h and f1, . . . , fd realizing the SQ-DIM,〈

h,
∑
i∈A

fi

〉2

≤

∣∣∣∣∣
∣∣∣∣∣∑
i∈A

fi

∣∣∣∣∣
∣∣∣∣∣
2

=
∑
i ,j∈A
〈fi , fj〉 ≤

∑
i∈A

(
1 +
|A| − 1

d

)
.
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Theorem (Feldman, Grigorescu, Reyzin, Vempala, Xiao ’17)

Let X be a domain and Z be a search problem over a class of
distributions D over X . For γ̄ > 0, let d = SDA(Z, γ̄). To solve Z
with probability ≥ 2/3, any SQ algorithm requires at least:

1 d calls to VSTAT(. , c1/γ̄)

2 min(d/4, c2/γ̄) calls to 1-STAT(.)

3 d calls to STAT(. , c3
√
γ̄).

differences from / extensions to SQ-DIM.

1 no need for labels.

2 γ̄ instead of γ

3 disconnecting d from γ

4 the VSTAT oracle
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Applications of SDA bounds

Consider the planted clique problem of detecting a k-clique randomly
induced in a G (n, 1

2 ) Erdös-Rényi random random graph instance.

Information-theoretically, this is possible for k > 2 log(n) + 1.

The state-of-the-art polynomial-time algorithm recovers cliques
of size k > Ω(

√
n) (Alon, Krivelevich, Sudakov ’98).

SDA lower bounds show that statistical algorithms cannot efficiently
recover cliques of size O(n1/2−ε).

52 / 86



An Introduction to Statistical Query (SQ) Learning
Bounds for SQ algorithms

SQ and Learnability
Applications

Optimization and search over distributions
Evolvability
Differential privacy and adaptive data analysis
Other applications

Applications of SDA bounds

Consider the planted clique problem of detecting a k-clique randomly
induced in a G (n, 1
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Statistical variant of planted clique

To use SDA machinery, we first need to define a distributional version
of planted clique.

Problem (distributional planted k-biclique)

For k, 1 ≤ k ≤ n, and a subset of k indices S ⊆ {1, 2, . . . , n}. The
input distribution DS on vectors x ∈ {0, 1}n is defined as follows:
w.p. 1− k/n, x is uniform over {0, 1}n; and w.p. k/n, x is such that
its k coordinates from S are set to 1, and the remaining coordinates
are uniform in {0, 1}. The problem is to find the unknown subset S .

an example:
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Lower bounds for the planted clique problem

Theorem (Feldman, Grigorescu, Reyzin, Vempala, Xiao ’17)

For ε ≥ 1/ log n and k ≤ n1/2−ε, let D be the set of all planted
k-clique distributions. Then SDAU(D, 2`+1k2/n2) ≥ n2`δ/3

Corollary

For any constant ε > 0 and any k ≤ n1/2−ε , and r > 0, to solve
distributional planted k-biclique with probability ≥ 2/3, any
statistical algorithm requires

at least nΩ(log r) queries to VSTAT(. , n2/(rk2)), or

at least Ω(n2/k2) queries to 1-STAT(.).
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Evolvability
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Evolutionary algorithms

Valiant (’09) defined the evolvability framework to model and
formalize Darwinian evolution, with the goal of understanding what is
“evolvable.”

Definition (evolutionary algorithm)

An evolutionary algorithm A is defined by a pair (R,M) where

R, the representation, is a class of functions from X to {−1, 1}.
M, the mutation, is a randomized algorithm that, given r ∈ R
and an ε > 0, outputs an r ′ ∈ R with probability PrA(r , r ′).

NeighA(r , ε) = set of r ′ that M(r , ε) may output (w.p. 1/p(n, 1/ε)).
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performance of a representation

Definition (performance and empirical performance)

The performance of r ∈ R w.r.t. an ideal function f : X → {−1, 1} is

Perff ,D(r) = Ex∼D [f (x)r(x)].

The empirical performance of r on s samples x1, . . . , xs from D is

Perff ,D(r , s) =
1

s

t∑
i

f (xi )r(xi ).
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Natural? selection

Definition (selection)

Selection Sel[τ, p, s](f ,D,A, r) with parameters: tolerance τ , pool
size p, and sample size s operating on f ,D,A = (R,M), r defined as
before, outputs r+ as follows.

1 Run M(r , ε) p times and let Z be the set of r ′s obtained.

2 For r ′ ∈ Z , let PrZ (r ′) be the frequency of r ′.

3 For each r ′ ∈ Z ∪ {r} compute v(r ′) = Perff ,D(r ′, s)

4 Let Bene(Z ) = {r ′ | v(r ′) ≥ v(r) + τ} and
Neut(Z ) = {r ′ | |v(r ′)− v(r)|+ τ}

5 if Bene 6= ∅, output r+ proportional to PrZ (r+) in Bene

else if Neut 6= ∅, output r+ proportional to PrZ (r+) in Neut

else output ⊥
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Evolvability

Definition (evolvability by an algorithm)

For concept class C over X , distribution D, and evolutionary
algorithm A, we say that the class C is evolvable over D by A if there
exist polynomials, τ(n, 1/ε), p(n, 1/ε), s(n, 1/ε), and g(n, 1/ε) such
that for every n, c∗ ∈ C , ε > 0, and every r0 ∈ R, with probability at
least 1− ε, the random sequence ri ← Sel[τ, p, s](c∗,D,A, ri−1) will
yield a rg s.t. Perfc∗,D(rg ) ≥ 1− ε.

Definition (evolvability of a concept class)

A concept class C is evolvable (over D) if there exists an evolutionary
algorithm A so that for any for any D(∈ D) over X , C is evolvable
over D by A.
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An illustration of evolvability

f

r0
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An illustration of evolvability

f

Neigh(p0,ε)

r0
r’1

r’2

r’p
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An illustration of evolvability

f

Neigh(p0,ε)

x1, x2, … xs

x1, x2, … xsx1, x2, … xs

x1, x2, … xs
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r’1

r’2
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An illustration of evolvability
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An illustration of evolvability

f

r1
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An illustration of evolvability

f

r2
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An illustration of evolvability
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An illustration of evolvability
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A characterization of evolvability

It turns out that evolvability is equivalent to learnability with CSQs!

Theorem (Feldman ’08)

C is evolvable if and only if C is learnable with CSQs (over D).

That EVOLVABLE ⊆ CSQ is immediate (Valiant ’09).
The other direction involves first showing that

CSQ>(r , θ, τ) =


1 if ED [r(x)c∗(x)] ≥ θ + τ

0 if ED [r(x)c∗(x)] ≤ θ − τ
0 or 1 otherwise

can simulate CSQs. Then an evolutionary algorithm is made that
simulates queries to a CSQ> oracle.
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What about sex?

Valiant’s model of evolvability is asexual.

Kanade (’11) extended evolvability to include recombination by
replacing Neigh (neighborhood) with Desc (descendants).

Definition (recombinator)

For polynomial p(, ), a p-bounded recombinator is a randomized
algorithm that takes as input two representations r1, r2 ∈ R and ε and
outputs a set of representations Desc(r1, r2, ε) ⊆ R. Its running time
is bounded by p(n, 1/ε). Desc(r1, r2, ε) is allowed to be empty which
is interpreted as r1 and r2 being unable to mate.
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is bounded by p(n, 1/ε). Desc(r1, r2, ε) is allowed to be empty which
is interpreted as r1 and r2 being unable to mate.
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Evolution under recombination

Definition (parallel CSQ)

A parallel CSQ learning algorithm uses p (polynomially bounded)
processors and we assume that there is a common clock which
defines parallel time steps. During each parallel time step a processor
can make a CSQ query, perform polynomially-bounded computation,
and write a message that can be read by every other processor. We
assume that communication happens at the end of each parallel time
step and on the clock. The CSQ oracle answers all queries in parallel.

Sexual evolution is equivalent to parallel CSQ learning.

Theorem (Kanade ’11)

If C is parallel CSQ learnable in T query steps, then C is evolvable
under recombination in O(T log2(n/ε)) generations.
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Differential privacy and adaptive data analysis
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Differential privacy

The differential privacy of an algorithm captures an individual’s
“exposure” of being in a database when that algorithm is used
(Dwork, McSherry, Nissim, Smith ’06).

Definition (differential privacy)

A probabilistic mechanism M satisfies (α, β)-differential privacy if for
any two samples S , S ′ that differ in just one example, for any
outcome z

Pr[M(S) = z ] ≤ eαPr[M(S ′) = z ] + β.

If β = 0, we simply call M α-differentially private.
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Differential privacy
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Laplace mechanism

Definition (Laplace mechanism)

Given n inputs in [0, 1], the Laplace mechanism for outputting their
average computes the true average value a and then outputs a + x
where x is drawn from the Laplace density with parameter 1/(αn):

Lap(0, 1
αn

)(x) =
(αn

2

)
e−|x |αn.

Theorem (Dwork, McSherry, Nissim, Smith ’06)

The Laplace mechanism satisfies α-differential privacy, and moreover
has the property that with probability ≥ 1− δ, the error added to the

true average is O
(

log(1/δ′)
αn

)
.
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Differentially private learning

Theorem (Blum, Dwork, McSherry, Nissim ’05)

If class C is efficiently SQ learnable, then it is also efficiently PAC
learnable while satisfying α-differential privacy, with time and sample
size polynomial in 1/α. In particular, if there is an algorithm that
makes M queries of tolerance τ to learn C to error ε in the SQ
model, then a sample of size m = O

([
M
ατ + M

τ2

]
log
(
M
δ

))
is sufficient

to PAC learn C to error ε with probability 1− δ while satisfying
α-differential privacy.

This is achieved by taking large enough sample and adding Laplace
noise with scale parameter as to satisfy α

M -differential privacy per
query while staying within τ of the expectation of each query.
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SQ equivalence to local differential privacy

Theorem (Kasiviswanaathan, Lee, Nissim, Raskhodnikova, Smith ’11)

Concept class C is locally differentially privately learnable if and only
if C is learnable using statistical queries.
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Adaptive data analysis

Interestingly, differential privacy has applications to a new area of
study called “adaptive data analysis.”

– Illustration from blog post by Hardt (’15)
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Adaptive data analysis was defined by Dwork, Feldman, Hardt,
Pitassi, Reingold, and Roth (15).

Definition (adaptive accuracy)

A mechanism M is (α, β)-accurate on a distribution D and on
queries q1, . . . , qk , if for its responses a1, . . . ak we have

PrM[max |qi (D)− ai | ≤ α] ≥ 1− β.

Note: there is also an analogous notion of (α, β) accuracy on a sample S .

A natural question is how many samples from D are needed to
answer k queries adaptively with (α, β)-accuracy.

Note that there is no assumption about the complexity of the class
from which the qi s come. So, standard techniques don’t apply.
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Differential privacy offers a notion of stability that “transfers” to
adaptive accuracy. The following is an adapted transfer theorem.

Theorem (Dwork, Feldman, Hardt, Pitassi, Reingold, and Roth ’15)

Let M be a mechanism that on sample S ∼ Dn answers k adaptively
chosen statistical queries, is ( α64 ,

αβ
32 )-private for some α, β > 0 and

(α8 ,
αβ
16 )-accurate on S . Then M is (α, β)-accurate on D.

Putting together the Laplace mechanism with the transfer theorem,
and doing some careful analysis to improve the bounds, one can get
an adaptive algorithm for SQs.
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Adaptively answering SQs

Theorem (Bassily, Nissim, Smith, Steinke, Stemmer, Ullman ’16)

There is a polynomial-time mechanism that is (α, β)-accurate with
respect to any distribution D for k adaptively chosen statistical
queries given

m = Õ

(√
k log3/2(1/β)

α2

)
samples from D.

Subsampling (Kasiviswanathan, Lee, Nissim, Raskhodnikova, Smith ’08) can

exponentially speed up the Laplace mechanism per-query without increasing

the sample complexity (Fish, Reyzin, Rubinstein ’18).
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Other applications
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A few other applications

Theorem (Sherstov ’08)

Let C be the class of functions {−1, 1}n → {−1, 1} computable in

AC0. If SQ-DIM(C ) ≤ O
(

22(log n)ε
)

for every constant ε > 0, then

IP ∈ PSPACEcc\ PHcc.

Result (Chu, Kim, Lin, Yu, Bradski, Ng, Olukotun ’06)

SQ algorithms can be put into “summation form” and automatically
parallelized in MapReduce, giving nearly-linear speedups in practice.

Theorem (Steinhardt, Valiant, Wager ’16)

Any class C that is learnable with m statistical queries of tolerance
1/m, it is learnable from a stream of poly(m, log |C|) examples and
b = O(log |C| log(m)) bits of memory.
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Summary

SQs originate from a framework motivated, in part, for
producing noise-tolerant algorithms.

It turned out that most of our algorithms can work in the SQ
framework.

SQ dimension gives a serious impediment for learning and for
optimization.

Novel applications of SQs have allowed us to shed light on the
difficulty of some problems.

There are also perhaps unexpected applications, to differential
privacy, adaptive data analysis, evolvability, among other areas.
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Open problems

Can we formally separate η-PAC from SQ?

Blum, Kalai, and Wasserman’s (’00) result fails non constant η.

Can we give evidence for the hardness of other classical problems
using statistical dimension?

Can we design/analyze faster or natural algorithms for
evolvability.

e.g. the swapping algorithm (Valiant ’09; Diochnos, Turán ’09)

What is the sample complexity of adaptively answering SQs?

best l.b.: Ω(
√
k/α) (Hardt, Ullman ’14) and u.b.: O(

√
k/α2)

(Bassiliy, Nissim, Smith, Steinke, Stemmer, Ullman ’16)

Where else can SQ have an impact?
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Thank You!

Any questions?
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