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1. Introduction

The goal of computatmnal learning theory is to establish formal models of the process
of learning, and to understand what can be and what cannot be learned efficiently in these
models. In this way one hopes to obtain results useful for the growing number of computer
applications of learning, and perhaps to gain insight into the human learning process as
well. Among the many different aspects of learning it is the task of learming a concept
which has received greatest attention from the theoretical point of view. We say that we
learned a concept if we are able to distinguish between its positive and negative instances.
It is assumed that the distinction is made on the basis of a rule or a definition specifying
which instances are positive and which ones are negative. Concept learning is usually illus-
trated by the example of learning the concept of an elephant by obtaining a definition like
“has four legs and a trunk”. This rule is selected from a large set of potential rules which
are conjunctions of Boolean predicates such as “has wings”, “is red”, etc. In general, it is

assumed that the concept to be learned, called the target concept, is selected from a class of

possible concepts called the concept class, which is fixed in advance, for example by assum-

. ing as above, that it has a representation of a prespecified form. Thus formally, learning a

concept is equivalent to identifying (exactly or approximately) a set from a given class of

. possibilities. A formal model of concept learning is further specified by determining what
" are the means of identification, i.e. what is a learning algorithm, and what are the criteria

of successful identification. Typlcally the learning algorithm is provided with a sample

. of the target concept and it may also have the opportunity to present hypotheses and

to query an oracle about the target concept. What distinguishes computational learning
theory from other related fields such as inductive inference, pattern recognition, machine

learming and neural computing is that 1t tries to establish formal models of learning and

- puts the emphasis on the efficiency of leammg algorithms by determining upper and lower
" bounds for the complexity of a learning problem. Another distinguishing feature is that,

as noted above, its favorite-animal appears to be the elephant, as opposed to the penguin.

Among the early developments we mention Rosenblatt’s perceptron convergence the-

orem {Rosenblatt (1962))}, the influential book of Minsky and Papert (1988) and Gold’s
work on inductive inference (Gold (1967)). Computational learning theory as a separate
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field was started several years later by Valiant’s paper on probably approximately correct

(PAC) learning (Valiant (1984)), which initiated an impressive amount of research in a
few years. In this paper we try to give a brief overview of some of the results obtained.

For many others we refer to the proceedings of the annual COLT conferences. Among
the important topics not discussed here we mention the learning of functions (Haussler
(1989)) and probabilistic concepts (Kearns and Schapire (1990)), learning in the presence
of errors (see e.g. Sloane (1988)), distribution dependent results (see e.g. Linial, Mansour
and Nisan (1989), Faigle and Kern (1990)) and space bounded learning (Floyd (1989)).

2. Learning problems

A learning problem is specified by a set X of possible instances, a set C C 2X of

concepts, called the concept class and a set H. & 2% of hypotheses, called the hypothesis
space. The goal is to learn an unknown farget concept C € C by using hypotheses from H
(the details of the models are given in the next section). We usually (but not always, see

the examples below) write X = |, v, Xn, C = J <, Cn, H=,>1 Ha, where X, = A"

for some set A such as {0,1} or R, and C; (resp. Hx) is the restriction of C (resp. H) to
Xa. |

concepts and hypotheses are encoded as words over some finite or infinite alphabet in such
a way that it can be decided in polynomial time whether an instance belongs to a concept

or hypothesis. A concept or a hypothesis may have several different representations. Fach
concept and hypothesis has a size, which is typically the length of a shortest representation.
The computational models are standard, sometimes one considers machines with oracles. ==
We note that for an infinite alphabet such as R, one can consider either the umform cost
or the logarithmic cost model of computation (see Blumer, Ehrenfeucht, Haussler and

Warmuth (1989) for a discussion of these options).

We mention some typical learning problems. In the first three examples we consider
the Boolean domain X, = {0,1}" for every n > 1. Unless mentioned otherwise, the ...

hypothesis space is the same as the concept class. The representations are standard.

k-term DNF: concepts are defined by a disjunction of at most & conjunctions of literals !

from {z1,... ,Zn}. (Thus formally C;, = {C C X, : tor some DNF ¢ =c; V... Ve, £ <
k over the variables z1,... ,Zn it holds that C = {x € {0,1}" : ¢ is true for x}}.)

k-term DNF with k-CNF as hypotheses: the same as above, but the hypotheses can

be arbitrary conjunctions of disjunctions of at most k literals from {21,... ,Tx}.

Halfspaces over {0,1}™ (or Boolean threshold functions): concepts are defined by a

linear inequality ayzj + ...+ @nz, 2> t, where a;,... ,an,t € Z.

d-dimensional bozes over a discrete space: X5 = {0,...,n — 1}¢, concepts are axis-

parallel d-dimensional rectangles. Note that here the parameter n plays a different role as

above. |
Unions of bozes in a fized Euclidean space: X = R4, concepts are arbitrary finite

' unions of axis-parallel d-dimensional rectangles. | |

Deterministic finite automata (DFA): X = {0,1}*, the concepts are the regular lan-

guages. The representations of the concepts are standard encodings of DFA.

As one actually deals with representations of concepts, it is assumed that instances,
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3. Models

In this section we introduce several formal learning models. The models to be pre-
sented are of two different types. In the PAC models approximate learning 1s achieved
with high probability by random sampling. In the on-line models the learning algorithm
‘may ask queries and it is required to identify the target concept exactly. We formalize the
basic models and some of their modifications.

3.1 Probably approximately correct (PAC) learning

A positive (resp. negative) ezample of a concept C is a pair (z,+) (resp. (x,—)) for
some z € C (resp. z ¢ (). An example of C is a positive or a negative example of C. A
sample of size m of C is a sequence of m examples of C.

The error of a hypothesis H with respect to a concept C, given a probability distri-
bution on the domain, is the probability of the symmetric difference CAH. This 1s the
probability of the event that H misclassifies a random example of C.

The following definition for efficient learning was introduced by Valiant (1984).

A concept class C is PA( learnable by the hypothesis space H if there 1s a polynomial
algorithm A and a polynomial p such that for every n > 1, every target concept C € Cp,
every probability distribution D, on X, and every ¢,6 (0 < ¢,8 < 1) the following holds:
if A i1s a given a sample of size p(n, : 6) of C selected from X according to D), then it
outputs a hypothesis H € H, such that with probability at least 1 — §, the error of H is

at most e.
For simplicity, the later discussion in Section 4.1. will be restricted to the case when

the hypothesis space is identical to the concept class. A concept class C which is PAC

learnable by C is called properly PAC learnable.
Thus informally, an efficient learning algorithm is required to find a good hypothesis

fast for a typical samplé of small size. The definition of PAC learnability is quite robust
- in the sense that it has several equivalent versions (see Haussler, Kearns, Littlestone and

Warmuth (1988)). For example, the learning algorithm can be allowed to have access to
an oracle which provides a random example of the target concept if requested.

The PAC models are also called distribution-free learning models as the learning al-
gorithms have to perform well independently of the underlying distribution.

For some learning problems one has to modify the above definition by mtroducmg a
new parameter corresponding to the size of the target concept. This is necessary in such
cases as learning DNF, Boolean formulas or Boolean circuits in general. Here C,, consists
of all subsets of X,,, thus if the sample size and the size of hypothesis 1s polynomial in n
(as implicitly required by the definition), one cannot hope for successful learning. (Indeed,
it follows from results mentioned later on, that this is not possible.)

Thus a concept class C is s-PAC learnable by a hypothesis space H if there 1s a
polynomial a.lgorithm A and a polynomial p such that for every n,s > 1, every target
concept &' € C, of size at most s, every probability distribution D, on Xn a,nd every €,90
(0 < ¢,8 < 1) the following holds: if A is given a sample of size p(n s, G-, 6) of C selected
accordmg to D, then it outputs a hypothesis H € H,, such that with probabﬂlty at least

1— 4, the error of H is at most «.
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Another important modification, the prediction model introduced by Haussler, Little-

stone and Warmuth (1988) does not require the learning algorithm to output the repre-
sentation of a hypothesis at all. Here the learning algorithm gets a random sample of the
target concept and a random element of the domain, and it has to predict the classification

of this element with respect to the target concept. '

A concept class C is called predictable if there 1s a polynomial algorithm A and a
polynomial p such that for every n > 1, every target concept C € C,, every probability
distribution D, on X, and every € (0 < € < 1) the following holds: if A is given a sample
of size p(n, -i-) of C selected from X,, according to D, and an element selected from X,
according to Dy, then it outputs 0 or 1, such that with probability at least ¢, the output

1sl1iff z € C. |
It can be shown (see Haussler, Kearns, Littlestone and Warmuth (1988)) that a con-

“cept class C is polynomially predictable iff there is some hypothesis space H such that C

is PAC learnable by H. (Note that by the assumptions given in Section 2. membership in
the hypotheses of H must be testable in polynomial time.) ~

3.2 On-line learning

In this class of models learning is thought of as an interaction between the learning

algorithm, asking queries about the target concept, and the environment, responding to
these queries. Thus the role of the environment is quite diflerent from that of the oracle

providing random examples in the version PAC model mentioned in the previous section.

As we are interested in exact identification here, the concept classes considered are always -
finite. Typically X, = {0,1}", a different example is provided by the domain {0,... y,n— .

1}¢ for boxes (see Section 2.).

In the basic model of learning with equivalence queries due to Angluin (1988), a query ~
of the learning algorithm is an equivalence query H from the hypothesis space H, or with
other words a hypothesis from . The response to the query is “yes”, if I 1s equivalent
to the target concept. Otherwise the response 1s a co unterezample to the hypothesis, ie.
an element z from the symmetric difference CAH. Note that given a hypothesis, the

 environment can have several choices for the counterexample. i

Teape

Computationally the interaction is modelled by providing the learning algorithm with
an extra oracle tape for printing a representation of its hypothesis and receiving the re- B
sponse. It is assumed that the representations of instances from X .., concepts from C,, and

hypotheses from H, have size polynomial in n.

A concept class C is said to polynomially learnable with equivalence queries from H, if
there is a polynomial algorithm A such that for every n 2 1, every target concept Celn
and every choice of the counterexamples, the following holds: if A is given n-in unary thej;

it terminates by identifying C.

In analogy with the previous section, C 1s 'pro_pérly polynomially learnable with equiv-

alence gqueries if it is polynomially learnable with equivalence queries from C.

In the next section we shall discuss a simplified version of the PAC model considering
only the sample size needed for probably approximately correct learning, disregarding
the amount of computation required. Similarly, in an on-line model it is interesting to.

ask, how much interaction is needed between the learning algorithm and the environment
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to solve a learning problem, again disregarding the amount of computation required to
produce the next query. This approach is analogous to the study of decision frees in
theoretical computer science. For example, the decision tree model of comparison based
sorting algorithms does not take into consideration the difficulty of determining the next

comparison.
Thus, given a finite set X, a concept class C C 2* and a hypothesis space H C 2% an

algorithm learning C with equlva,lence queries from H is just a function assigning the next
query to the previous queries and the counterexamples received for these queries. In fact,
as the algorithms are assumed to be deterministic, the next query depends on the previous
counterexamples only. The learning complexity of a learning algorithm can be defined as
the largest number of counterexamples required to identify a target concept, considered
over all target concepts and all possible choices of counterexamples. The complezity of
learning C using equivalence queries from H is the smallest learning complexity of a learning
algorithm solving this problem. | |

We note that this definition applies to a smgle finite concept class C. The relationship
between the previous definition and this one is that if the concept class C = [, Cn
is polynomially learnable with eqmvalence queries from H = U n>1 Tin then for some
polynomial p, for every n > 1, the complexity of learning C, using equivalence queries

from H,, is at most p(n).
Two 1mportant special cases are to be mentioned here. The learning complexity of

C is the complexity of learning a concept from C with equivalence queries from C. The
learning complezity of C with arbitrary equivalence queries is the complexity of learning C
using equivalence queries from 2. This is the same as the mistake bound of C considered

by Littlestone (1988).
Finally we consider another query type. A membership query is specified by an element

z of the domain. The response to such a query is the classification of = with respect to the
target concept. It turned out that there are several interesting learning problems which can
be solved efficiently using equivalence queries combined with membership queries. Some
of these will be mentioned in Section 5.

A detailed discussion of the relationship between the different models is given 1n Maass
and Turdn (1990b). Here we only mention that, as observed by Angluin (1987), a learning
algorithm using equivalence queries can be simulated by a PAC learning algorithm. An

equivalence query H is simulated by taking a sufficiently large sample of the target concept.
If this sample contains a counterexample then the simulation continues. Otherwise H is

output as the final hypothesis.

4. Characterizatiohs of Iearnability

In this section we mention results which characterize learnability in the different mod-
els considered, in terms of other notions such as the Vapnik-Chervonenkis dimension,
Occam algorithms, weak learnability and adversary trees. These characterizations can be
used to obtain generic learning algorithms and to prove negative results for learnability.



Q4

4.1 Vapnik-Chervonenkis dimension

Given a concept class C over a domain X, its Vapnik-Chervonenkis dimension VC(C)
is defined as follows. A subset ¥ C X is called shattered by C if for every subset Z C Y
there is a concept C € C such that Z = CNY. Then VC(C) is the size of a largest shattered
subset of X. It turns out that this combinational parameter is very closely related to the
difficulty of learning a concept from C.

First let us consider still another modified version of proper PAC learning (referred to
in the previous section), where A is not required to be a polynomial time algorithm. Thus
A 1s only assumed to be a function which assigns a hypothesis H € H to a sample of some
given size m. Fora given ¢,6 (0 < ¢,6 < 1) Ais called an (¢, )-learning function if for every
concept C € C and every distribution D over X 1t holds tha,t if H is the hypothesis assigned
to a random sample of size m selected from X according to I then with probability at least
1 —§ the error of H is at most e. What is the smallest m {depending on € and §) for which
there is an (e, §)-learning function? Improving a result of Blumer, Ehrenfeucht, Haussler

and Warmuth (1989} (which in turn built on the work of Vapnik and Chervonenkis (1971)),
Anthony, Biges and Shawe-Taylor (1990) showed that if

ve(e)/ (ve(e) - |
2 e(lj\/E) (log( ( )/(5 ( ) 1)) + 2V C(C) log(g))

then every A assigning a consistent hypothesis to a sample satisfies the requirement. (A
hypothesis H is consistent with a sample if it contains all its positive examples and none
of its negative examples.) Here one has to assume some weak measurability conditions in
the case when X = R" (see Blumer, Ehrenfeucht, Haussler and Warmuth (1989)). On the
other hand, improving a bound of Blumer, Ehrenfeucht, Haussler and Warmuth (1989),
it was shown by Ehrenfeucht, Haussler, Kearns and Valla,nt ( 1988 that if C is nontrivial

then no learning function exists (for any H) if m < L=<log % + B(f) =2, (C'is trivial if it

contalns either one concept, or two concepts partltlomng the domain.) Thus apart from
the gap of a factor of O{log 1 ) these results give a precise characterization of the required
sample size in terms of the Vapnjk-Chervonenkis dimension. It is remarkable that there 1s

a sharp dichotomy here - either all consistent functions work, or no function works at all.

Now returning to the PAC model, it follows that the polynomial growth of VC (Cr)
and the existence of an efficient algorithm finding a consistent hypothesis for a given
sample is a suflicient condition for proper PAC-learnability. The notion needed here is
that of rendomized polynomial hypothesis finder. This i1s a randomized polynomial time
algorithm, which given a sample, outputs a consistent hypothesis with probability at least
o, for some fixed o > 0. It also follows from the characterization above that the polynomial
growth of VC(C,) is a necessary condition for proper PAC-learnability. In addition, it can
be shown that a PAC-learning algorithm can be used to construct a randomized polynormal
hypothesis finder (Pitt and Valiant (1988); see Section 6. for further applications of this
fact). This implies the following characterization of proper PAC-learnability (Blumer,
Ehrenfeucht, Haussler and Warmuth (1989)): a concept class C is properly PAC learnable
iff the growth of VC(C,,) is polynomial and there is a randomized polynomial hypothesis
finder for C. In the Boolean case X, = {0,1}" this characterization is further simplified
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by the fact that the polynomial growth of VC(C,) is equivalent to the polynomial growth
of log |Cn| (Natarajan (1987), Haussler, Kearns, Littlestone and Warmuth (1988)).

4.2 Occam algorithms

An Occam algorithm is an algorithm which, given a sample of the target concept,
outputs a consistent and relatively simple hypothesis. With other words, an Occam al-
gorithm is a hypothesis finder which is capable of some data compression. This notion,
introduced by Blumer, Ehrenfeucht, Haussler and Warmuth (1987), corresponds to the
principle called Occam’s Razor stating that one should prefer simple hypotheses.!

First let us assume that X,, = {0,1}". In this case an Occam algorithm is a randomized
polynomial algorithm A for which there is a polynomial p and a constant a(0 < o < 1)
such that for every n > 1, every target concept C € C, of size at most s and every e
(0 < € < 1) the following holds: if A is given a sample of size m of (' as input, then
with probability at least 1 — ¢ it outputs the representation of a consistent hypothesis from
Cr having size at most p(n,s, %) - m%. The assumption o < 1 represents the amount of
compression required.

Blumer, Ehrenfeucht, Haussler and Warmuth (1987) showed that if there is an Occam-
algorithm for C then C is properly s-PAC learnable. The proof is based on the observations
that a hypothesis with large error is unlikely to be consistent with a large sample, and
that there are only few short hypotheses. (We note that a similar argument, combined
with Sauer’s lemma {1972) about the Vapnik-Chervonenkis dimension, forms the basis of
the result of the previous section.)

In the case of real inputs a similar result can be obtained if the definition of an Occam
algorithm is modified by replacing the existence of short hypotheses with the existence of a
hypothesis space of small Vapnik-Chervonenkis dimension { Blumer, Ehrenfeucht, Haussler
and Warmuth (1989)). This implies, for example, that unions of boxes in a Euclidean
space are properly s-PAC learnable. - -

Recently Board and Pitt (1990) and Schapire (1990) obtained partial converses of
these results, showing that under quite general conditions s-PAC learnability implies the
existence of an Occam algorithm. This emphasizes the canonical role of Occam algorithms
and data compression for learnability.

In the case of X,, = {0,1}" only simple encodings appear to have Occam algorithms.
If this 1s indeed the case, the above results could be used to prove negative results for
learnability by showing the nonexistence of Occam algorithms, as suggested by Board and
Pitt (1990). Some further comments on this relatipnship between computational learning
theory and combinatorial optimization are given in Section 6.

1Tt is interesting that the same principle was formulated by Maimonides around 1190 in
The Guide of the Perplexed (Maimonides (1963)): “... if we assume, for instance, that

we suppose as a hypothesis an arrangement by means of which the observations regarding
the motions of one particular star can be accounted for through the assumption of three

spheres, and another arrangement by means of which the same observations are accounted
for through the assumption of four spheres, it is preferable for us to rely on the arrangemerit
postulating the lesser number of motions.” (IL.11.)
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4.3 Weak predictability

An interesting characterization of predictability is obtained by considermg the notion
of weak predictability, introduced by Kearns and Valiant (1989). Referring to the refor-

mulation of predictability given at the end of Section 3.1, a concept class C 1 called weakly
predictable if there exist a hypothesis space H, a polynomial algorithm A and polynomials
p1, p2 such that for every n > 1, every target concept C € Cp, every probability distribu-
tion D, on X, and every § (0 < 6 < 1) the following holds: if A is given a sample of size
P1 (n, %) of C selected from X, according to D,, then it outputs a hypothesis 4 € H,

such that with probability at least 1 — §, the error of H 1s at most % — p; g

Thus instead of outputting a hypothesis with error at most €, the learning algorithm
is only required to output a hypothesis with error slightly smaller than % ‘

Does weak predictability imply predictability? It was noted that the approach of
running a weak learning algorithm several times and taking majority vote does not work

as the hypotheses need not be independent.
Nevertheless, Schapire (1990) showed that the notions of predictability and weak

predictability are equivalent. The result is actually formulated as referring to the more
general notions of s-predictability and weak s-predictablity, where s is again a parameter
for the size of the target concept. It is interesting, that the existence of an Occam algorithm
in this case (mentioned in the previous section) is obtained as a corollary of this theorem.

Another proof was found by Freund (1990). Both proofs are built on simulations of the
weak learning algorithm on different distributions, making essential use of the distribution-

free property of the PAC model.

4.4 On-line learning with arbitrary hypotheses

We close thus section by giving a characterization, due to Littlestone (1988) of the

complexity of learning a concept class C over a finite domain X, with arbitrary equivalence

queries. | |
A learning algorithm using membership queries only can be viewed as a deciszon iree,

where each node is labelled by an element z of the domain, the edges leaving a node are
labelled by 0 or 1, giving the classification of z, and the leaves are labelled by concepts C
from C. For a given target concept, the learning algorithm starts at the root and follows a
path down the tree, arriving to a leaf where it identifies the label of the leaf as the target
concept. The complexity of learning C with membership queries is the smallest depth of
any decision tree for C. o

On the other hand, for each decision tree T one can consider the minimal depth
of a leaf in T, and maximize this quantity over all decision trees for C. This complexity
measure, called the adversary tree complexity of C, turns out to be equal to the complexity

of learning C using arbitrary hypotheses. An application of this characterization for proving

lower bounds will be mentioned in Section 6.2.
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5. Some learning algorithms

As noted above, the characterizations of PAC learnability suggest general approaches
to the construction of PAC learning algorithms. On the other hand the characterization of
PAC learnability in terms of the Vapnik-Chervonenkis dimension implies that the model
does not distinguish any two learning algorithms producing consistent hypotheses from

a large enough sample. It is desirable, also from the practical point of view, to find
further criteria for evaluating the performa.nce of learning algorithms and the complexity
of learning problems. In this section we consider the complexity of some concrete learning
problems in the on-line models, which provide a framework for such an evaluation.

The problem of learning a halfspace over {0,1}" (or a Boolean threshold function)
defined in Section 2. is one of the first ones considered in learning theory. The perceptron
algonthm of Rosenblatt {1962) can be viewed as a learning algorithm using equivalence

queries. The current weight vector is updated after each counterexample by essentially
adding the counterexample to the weight vector. The Winnow algorithms of Littlestone
(1988) are multiplicative versions of this algonthm to learn monotone Boolean threshold
functions, with a good performance guarantee in several cases. Both algorithms need an

exponential number of counterexamples in the worst case (Minsky and Papert (1988), resp.

Maass and Turan (1990a), (1990d)).
A learning algorithm demonstra,ting the proper polynomial learnability of halfspaces

over {0,1}" with equivalence queries is given in Maass and Turén (1989), (1990d). The
algorithm maintains a version space, i.e. a set of representatlons of those concepts which

are still candidates for being the target concept. The next query is the center of this
set, with a suitable notion of center. It turns out that every counterexample reduces the

volume of the version space by a constant factor. This approach is an adaptation of the
ellipsoid method in combinatorial optimization (IKhachian (1979), Grotschel, Lovasz and
Schrijver (1988)). More generally, every algorithm for finding a point in a convex polytope
given by a separation oracle, and having a guaranteed lower bound for its volume (see
Grotschel, Lovdsz and Schrijver (1988)) can be used to construct an algorithm for learning
halfspaces over {0,1}". In particular, adapting Vaidya's algorithm (Vaidya (1989)) one gets
an algorithm of learning complexity O (n?logn) (see Section 6.2 for an almost matching
lower bound). In comparison, the sample size requlred for PAC learning a halispace over
{0,1}" for fixed € and ¢ 1s © (n).

Now we turn to the problem of learning boxes in a discrete d-dimensional space (also

defined in Section 2.). Note that the standard representations have length O (dlogn). For
fixed d, an algorithm showing proper polynomial learnability with equivalence queries is
given in Maass and Turan (1989), (1990 ¢). The learning complexity of the algorithm is O
(log n), which is shown to be optimal. .
- The algorithm.is again based on the use of a version space and the ex1stence of a
hypothesis for which every counterexample reduces the version space significantly. Thus
both algorithms mentioned may be considered as adaptations of the paradigm of binary
search to concept learning, |

Using a similar approach, Beals (1990) found an algorithm of complexity O (log” n)
for learning a square over the domain {0,... ,n — 1}*.
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The range of applicability of this approach is not clear. For example, 1t is shown 1n
Maass and Turdn (1990 a), (1990c) that the complexity of learning boxes which are not

required to be axis-parallel is 2(n) even 1n the two-dimensional case.
The complexity of the box learning algorithm is exponential in d, while the complexity

of the algorithm which always outputs a minimal consistent hypothesis is O (dn) (thus
polynomial in d, but exponential in log n). Recently Zhixiang Chen (1991) announced a
box learning algorithm of complexity O (d? log® n).

By now there is a large number of interesting learning algorithms which make essential
use of both equivalence and membership queries. The first example is Angluin’s algorithm
for learning DFA (Angluin (1987)). In this algorithm the membership queries are used to
interpret the counterexample received, 1n order to be able to form a new hypothesis. We
note that the complexity measure used here is different from the ones considered so far, as
an efficient learning algorithm is required to be polynomial in the number of states of the
target DFA and in the length of the longest counterexample received. This 1s necessary as
the counterexamples can be of arbitrary length and the algorithm has to be able to read
them. ‘ |

Among the other problems which are efficiently learnable using equivalence and mem-
bership queries we mention read-once formulas (Angluin, Hellerstein and Karpinski (1989))
and conjunctions of Horn clauses (Angluin, Frazier and Pitt (1990)).

6. Negative results

Corresponding to the two types of learning models considered so far, a negative result
for learnability can be either complexity theoretic or information theoretic. A complexity
theoretic negative result shows that there 1s no comput ationally efficient learning algorithm
for a given learning problem, using some complexity theoretic assumption such as P 7
NP. An information theoretic negative result provides a lower bound to the amount of
information, e.g. the number of counterexamples, that must be obtained by a learning
algorithm. These lower bounds apply to all learning algorithms, without considering their

computational complexity.

6.1 Complexity theoretic negative resulis

As noted in Section 4.1 the proper PAC learnability of a concept class C implies the
existence of a randomized polynomial hypothesis finder for C. Using this argument, Pitt
and Valiant (1988) showed that if R # NP then k-term DNF are not properly PAC
learnable for k > 2. (R is class of languages accepted by randomized polynomial machines
with one-sided error.) They also noted that if the hypothesis space is enlarged to k-CNF

then k-term DNF become PAC-learnable (Valiant (1984)).
Similarly, it follows from the results described in Section 4.2. that for certain classes

such as DFA and Boolean formulas proper s-PAC learnability implies. the existence of an
Occam algorithm for C. Now an Occam algorithm may be viewed as an approximation
algorithm for the problem of finding a shortest representation of a sample. Thus if one
proves, e.g. assuming R # NP, that there is no such approximation algorithm, then this
implies a negative result for proper s-PAC learnability. In this direction we mention the
result of Pitt and Warmuth (1989): if P # NP then the smallest DFA consistent with a
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given sample cannot be approximated within any polynomial. A somewhat stronger result

is needed to prove the nonlearnability of DFA in the proper s-PAC model.
Another approach provides stronger negative results, showing unpredictability of cer-

tain learning problems, using potentially stronger cryptographic assumptions,
As already observed by Valiant in his fundamental paper (Valiant (1984)), the task of
breaking a cryptosystem may also be viewed as a learning problem (more precisely, as a

prediction problem), and thus the result of Goldreich, Goldwasser and Micals (1986) may be
interpreted as showing the unpredictability of Boolean circuits, assuming the existence of a
one-way function. Here the learner is even allowed to ask memb ership quenes. Kearns and
Valiant (1989) considered “easier” learning problems such as Boolean formulas and DFA,
and using similar cryptographic assumptions showed that these are also unpredictable.
Thus their result implies the strong nonapproximability of a mimimal consistent DFA,
using the stronger assumption. It is interesting to note that in view of Angluin’s algorithm

mentioned in Section 5. the result for DFA cannot be extended to include membership
queries. On the other hand, recently Angluin and Kharitonov (1991) proved, using the
same cryptographic assumptions and a construction of Naor and Yung (1990) that the

class of NFA is unpredictable even if membership queries are allowed.

6.2 Information theorefic negative results

As the first example of a negative result of this kind, we recall the lower bound to the
sample size of any learning function in terms of the Vapnik-Chervonenkis dimension of the
concept class (Ehrenfencht, Haussler, Kearns, Valiant (1989)), described in Section 4.1.

In view of the important role played by the Vapnik-Chervonenkis dimension in PAC
learnability, one may consider its relationship to learning complexity in the different on-line
models. Littlestone (1988) observed that for every finite concept class C, VC(C) is a lower
bound to the complexity of learning a concept from C with arbitrary equwalence queries,
Simlarly VC(C) 1s a lower bound to learning complexity if only membership queries are

allowed.

On the other hand there are concept classes which can be learned with at most 0.42
VC (C) queries if both equivalence and membership queries are allowed. Nevertheless,
= LV C(C) does provide a lower bound to the complexity of learning C with equivalence and
membership queries, for every finite concept class C (Maass and Turan (1990 a), (1990b)).
'This general information theoretic lower bound is sharp in some cases, e.g. it gives a sharp
k(1 +log 2)) bound for the complexity of learning a conjuction of k out of n variables.

Finally we mention lower bounds for learning halfspaces over {0,1}"™ and DFA.

The characterization of the complexity of learning with arbitrary equivalence queries
can be used to show that the complexity of learning a halfspace over {0,1}" with arbitrary
equivalence queries is (n*) (Maass and Turan (1989) (1990 d)). This matches the upper
bound (which is achieved by equivalence queries from the concept class itself) gwen i1
Section 5. up to a factor of logn.

Complementmg her polynomial algorlthm for learning DFA with eqmvalence and
membership queries (1987), and her remark that the number of membership queries re-
quired to learn DFA’s 1s exponential (1981), Angluin showed that the number of equivalence
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queries required to learn n-state DFA accepting a subset of {0,119(") is also superpolyno-
mial {Angluin (1990)).

7. Summary

In the introduction of his paper starting computational learning theory, Valiant ob-
served that the intuitive notion of learning merits similar attention from the point of view
of formal theoretical study as that of the notion of computing. In this comparison, learn-
ing appears to be more elusive, more difficult to capture by a unified m:athematical f;heory
(as noted by Haussler (1990), it is not clear whether such a theory is even possible or
desirable). Research was focused on concept learning, which is in fact close}y related to
computing in that several approaches developed in theoretical computer science can b.e
adapted to its study. Interesting connections were found with other fields such as combi-

natorial optimization, cryptography and statistical pattern recognition. In this survey we
gave a short account of some aspects of the results obtained in computational learning t?e-
ory, by describing several learning models, characterizations of learnability, some learning

algorithms and negative results.

Acknowledgement I would like to thank Wolfgang Maass for several valuable discussions.
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