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Abstract

These notes were created for CS 6501 - Learning Theory at the University of Virginia during the Fall
of 2015. The primary scope of the notes is the exposition of the Chernoff bounds as well as the Hoeffding
bound as these are common tools used in Computational Learning Theory, andmore broadly in the analysis
of randomized algorithms.

1 Introduction

Proposition 1 (Union Bound). Let Y1, Y2, . . . , YS be S events in a probability space. Then,

Pr

 S⋃
j=1

Yj

 ⩽
S∑

j=1

Pr
(
Yj
)
.

The inequality is equality for disjoint events Yj.

Proposition 2 (Markov’s Inequality). Any non-negative random variable X satisfies

Pr (X ⩾ α) ⩽ E [X]

α
, ∀α > 0 .

Proposition 3 (Chebyshev’s Inequality). Let X be a random variable with expected value µ and variance σ2.

Then,

Pr (|X− µ| ⩾ α) ⩽ σ2

α2
, ∀α > 0 .

Remark 1 (Chebyshev vs. Markov). The Chebyshev inequality tends to give better bounds than the Markov
inequality, because it also uses information on the variance of X.

Theorem 1 (Weak Law of Large Numbers). Let X1, . . . , XN be a sequence of independent identically dis-
tributed random variables, with expected value µ. For every ϵ > 0:

Pr

(∣∣∣∣∣ 1N
N∑
i=1

Xi − µ

∣∣∣∣∣ ⩾ ϵ

)
→ 0, as N → ∞ (1)

Proof. Let X1, . . . , XN be a sequence of independent identically distributed random variables, with expected
value µ and variance σ2. Define the random variable Y = 1

N

∑N
i=1 Xi. By linearity of expectation we get

E [Y] = 1
N

∑N
i=1 E [Xi] = µ. Since all the Xi are independent, the variance is Var [Y] = 1

N2

∑N
i=1 Var [Xi] =

σ2

N
. We now apply Chebyshev’s inequality and obtain Pr (|Y − µ| ⩾ ϵ) ⩽ σ2

Nϵ2
, for any ϵ > 0. ■
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1.1 Concentration and Tail Inequalities

In this section we examine a series of tools for estimating the concentration and bounding the probability of
the tails. References for further reading are the following: for the Chernoff bounds please refer to [1] or to
[5]; for the Hoeffding bound please refer to [4] or to [2].

Remark 2 (Bernoulli/Binomial Trials vs Poisson Trials). A sequence of Bernoulli/binomial trials is a sequence
of coin tosses of the same (biased) coin, while Poisson trials is a sequence of coin tosses of potentially different
(biased) coins.

Proposition 4 (Chernoff Bound for Upper Tail). Assume X1, X2, . . . , Xt are independent Poisson trials. Let
X =

∑t
i=1 Xi, and µ = E [X]. Then, for γ ∈ (0, 1) it holds

Pr (X > (1+ γ)µ) ⩽ e−µγ2/3 .

Proposition 5 (General Chernoff Bound for Upper Tail). AssumeX1, X2, . . . , Xt are independent Poisson trials.
Let X =

∑t
i=1 Xi, and µ = E [X]. Then, for γ ⩾ 0 it holds

Pr (X > (1+ γ)µ) ⩽ e−µγ2/(2+γ) .

Proposition 6 (Chernoff Bound for Lower Tail). Assume X1, X2, . . . , Xt are independent Poisson trials. Let
X =

∑t
i=1 Xi, and µ = E [X]. Then, for γ ∈ (0, 1) it holds

Pr (X < (1− γ)µ) ⩽ e−µγ2/2 .

Proposition 7 (Hoeffding Bound). Let X1, . . . , XR be R independent random variables, each taking values in
the range I = [α,β]. Let X = 1

R

∑R
i=1 Xi and µ = E [X] denote the mean of their expectations. Then,

Pr (|X− µ| ⩾ ϵ) ⩽ 2e−2Rϵ2/(β−α)2 .

2 Examples

Examples with (biased) coins are our best friends on understanding the bounds mentioned earlier. For more
examples see [3, 5].

Example 1 (Fair Coin Tossing). We toss a fair coin 100 times and 80 times we observe H. What is the probability
of this event?

Solution. Let X =
∑100

i=1 Xi be the number of times that we observed H, where the Xi’s are indicator random
variables indicating whether we obeserved H or not on the i-th trial. Note that the expectation is E [X] =
Np = 100 · (1/2) = 50. Also note that Var [X] = Np(1−p) = 100 · (1/2) · (1/2) = 25. A direct computation
for the probability p of such an event gives p =

(
100
80

)
· 2−100 ≈ 4.2 · 10−10.

• Markov’s inequality yields Pr (X ⩾ 80) ⩽ 50/80 = 0.625.

• Chebyshev yields Pr (|X− 50| ⩾ 30) ⩽ 25
302 = 2.7 · 10−2.

• Note that setting γ = 29/50 = 0.58 we have that (1 + γ) · µ = 79. Thus, the Chernoff bound for the
upper tail gives Pr (X > 79) ⩽ e−50·(0.58)2/3 ⩽ e−5.6 ⩽ 3.7 · 10−3.

• Let Y = X/100. The Hoeffding bound gives Pr (|Y − 0.5| ⩾ 0.3) ⩽ 2e−200·0.09 ⩽ 3.2 · 10−8. ■

Before we jump into conclusions as to which bound is preferable, let us try the following example.
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Example 2 (Biased Coin). We toss a coin 1000 times and we observe 100 times H. Give an upper bound on the
true probability p that the coin has for bringing up H with 95% confidence.

Solution. We have that empirically the probability of observing H is 0.1. This is the best estimate that we have
for the true probability that this coin will give H in one particular trial.

Let p be the true probability that this coin has for bringing up H in one coin toss. Then, we would like to
examine the probability Pr (X < 101). For this reason we will use the Chernoff bound for the lower tail. We
have µ = 1000 · p and we want (1 − γ) · p · 1000 = 101 ⇒ γ = p−0.101

p
. Substituting to Proposition 6 we

get Pr (X < 101) ⩽ e
−1000p

(p−0.101)2

2p2 , which we require to be upper bounded by δ = 0.05 since this is our

failure probability. Thus, we want e
−500p

(p−0.101)2

p2 ⩽ 0.05 ⇒ . . . ⇒ p2 − 0.208p + (0.101)2 ⩾ 0. Hence,
for p ⩾ 0.129 the Chernoff bound indicates that we would observe less than 101 H in our experiment with
probability at most 5%. In other words, we can say that the coin has true probability of bringing up heads
not more than 0.129 with confidence 95%.

Now, let’s try to answer the same question using theHoeffding bound. By Proposition 7wewantPr (|0.1− µ|) ⩽
2e−2000ε2 ⩽ 0.05 ⇒ . . . ⇒ ε ⩾

√
ln(40)
2000

≈ 0.04295. In other words if we allow ε ⩾ 0.043 with probability
at least 0.95 the absolute difference |0.1 − µ| is at most ε. Thus µ ⩽ 0.143 and since µ = 1000p/1000 = p

we have that p ⩽ 0.143 with confidence at least 95%. ■

Remark 3 (Chernoff or Hoeffding?). Note that in the second example the Hoeffding bound gives a worse bound.
While this is true, the Hoeffding bound in the second example also states that based on the experiment that we
conducted, with confidence at least 95%, the true probability that the coin has for bringing up H is in the interval
[0.057, 0.143]. Thus, typically, when we are interested in concentration we use the Hoeffding bound, while if we
are interested in only one-sided bounds, we tend to prefer the Chernoff bound.

2.1 Towards the Double Sample Argument

Lemma 1. Let p ⩾ ε > 0. Then, 4p− 4ε+ ε2/p ⩾ p.

Proof. Set Q(p) = 3p2 − 4εp+ ε2. The discriminant of Q is ∆ = 16ε2 − 12ε2 = (2ε)2. Thus, the two roots
of Q are p1 = 2ε

6
= ε/3 and p2 = 6ε

6
= ε. Hence, Q(p) ⩾ 0 when p is not in the interval (ε/3, ε) and since

p ⩾ ε the claim follows. ■

Lemma 2. Given a coin that succeeds with probability p ⩾ ε > 0, it holds that after m ⩾ 8/ε trials the number
of successes is not less than ε ·m/2 with probability at least 1/2.

Proof. We want to show that

Pr
(
X <

εm

2

)
⩽ 1

2
.

In order to do that we will use Proposition 6. For the given coin we have µ = E [X] = pm ⩾ εm. We want
(1− γ)pm = εm/2. Thus, we set γ = 1− ε

2p
and so by Proposition 6 we obtain

Pr
(
X < εm

2

)
⩽ e

−pm(1− ε
2p)

2
/2

= e−
1
8 ·(4p−4ε+ε2/p)·m

⩽ e−
1
8 ·p·m (Lemma 1)

⩽ e−ε·m/8 (since ε ⩽ p)
⩽ e−

ε
8 ·

8
ε (since 8/ε ⩽ m)

= e−1

⩽ 1/2
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Recall that ln(2) ≃ 0.693 < 0.7 and note that we could accomplish the same guarantee with only m =
⌈8 ln(2)/ε⌉ < ⌈5.6/ε⌉ < ⌈8/ε⌉ coin flips. For our purposes it will not matter, as m will be larger than ⌈8/ε⌉
anyway. ■

Exercise 1. Prove Lemma 2 using Chebyshev’s inequality (Proposition 3).
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