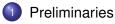
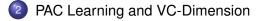
Computational Learning Theory Overview

Dimitris Diochnos

University of Oklahoma School of Computer Science

CS 5970 – Computational Learning Theory Fall 2020





Learning Theory in One Line

Find a Good Approximation of a Function with High Probability

Computational Learning Theory

Goal (Good Approximation with High Probability)

There is a function c over a space X. One wants to come up (in a reasonable amount of time) with a function h such that h is a *good* approximation of c with *high* probability.

Description (Parameters and Terminology)

- X: Instance Space
- $c \in C$: Target Concept
- Good Approximation: Small Error ε
- High Probability: Confidence 1δ
- Reasonable Amount of Time: Polynomial in n, 1/ε, 1/δ, size(c)

Example

$$X = \{0, 1\}^n$$

D. Diochnos (OU - CS)

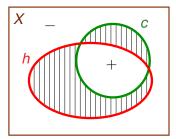
$$\mathbf{c} = x_1 \wedge x_2 \wedge x_3$$

 $h = x_1 \wedge x_2$

 $h \in \mathcal{H}$: Hypothesis

Probably Approximately Correct (PAC) Learning

- There is an *arbitrary, unknown* distribution \mathcal{D} over X.
- Learn from *poly* $(\frac{1}{\varepsilon}, \frac{1}{\delta})$ many examples (x, c(x)), where $x \sim \mathcal{D}$.
- $\operatorname{Risk}_{\mathcal{D}}(h, c) = \operatorname{Pr}_{x \sim \mathcal{D}}(h(x) \neq c(x)).$



Goal ([Valiant, 1984])

 $\mbox{\rm Pr}\left(\mbox{\rm Risk}_{\ensuremath{\mathbb{D}}}\left(h,c\right)\leqslant\epsilon\right)\geqslant1-\delta$.

D. Diochnos (OU - CS)

Computational Learning Theory Overview

Efficiently PAC Learning Conjunctions

Let $X = \{x_1, x_2, x_3, x_4, x_5\}$ and $c = x_1 \land \overline{x}_3 \land x_4$.

• Request *m* examples and look on the positive ones.

example	hypothesis h
	$x_1 \wedge \overline{x}_1 \wedge x_2 \wedge \overline{x}_2 \wedge x_3 \wedge \overline{x}_3 \wedge x_4 \wedge \overline{x}_4 \wedge x_5 \wedge \overline{x}_5$
((11010),+)	$x_1 \wedge x_2 \wedge \overline{x}_3 \wedge x_4 \wedge \overline{x}_5$
((10010),+)	$x_1 \wedge \overline{x}_3 \wedge x_4 \wedge \overline{x}_5$
((10011),+)	$x_1 \wedge \overline{x}_3 \wedge x_4$

Theorem (PAC Learning of Finite Concept Classes)

For every distribution \mathfrak{D} , drawing $m \ge \frac{1}{\varepsilon} \cdot \left(\ln |\mathfrak{C}| + \ln \frac{1}{\delta} \right)$ examples guarantees that **any consistent** hypothesis h satisfies **Pr** (error (h, c) $\le \varepsilon \ge 1 - \delta$.

- For conjunctions $|\mathcal{C}| = 3^n + 1$.
- Efficiently PAC learning because the algorithm runs in poly-time.
- What about infinite concept classes (e.g. halfspaces) ?

D. Diochnos (OU - CS)

Different Classifications and the Growth Function

• $\mathbf{x} = (x_1, x_2, \dots, x_m)$ is a set of *m* examples.

Number of Classifications $\Pi_{\mathcal{H}}(\mathbf{x})$ of \mathbf{x} by \mathcal{H} : Distinct vectors $(h(x_1), h(x_2), \dots, h(x_m))$ as h runs through \mathcal{H} .

• $\Pi_{\mathcal{H}}(\mathbf{x}) \leqslant 2^m$.

Different Classifications and the Growth Function

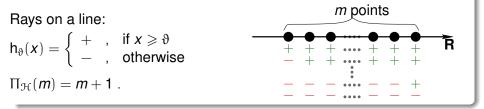
• $\mathbf{x} = (x_1, x_2, \dots, x_m)$ is a set of *m* examples.

Number of Classifications $\Pi_{\mathcal{H}}(\mathbf{x})$ of \mathbf{x} by \mathcal{H} : Distinct vectors $(h(x_1), h(x_2), \dots, h(x_m))$ as h runs through \mathcal{H} .

• $\Pi_{\mathcal{H}}(\mathbf{x}) \leqslant 2^m$.

Growth Function: $\Pi_{\mathcal{H}}(m) = \max\{\Pi_{\mathcal{H}}(\mathbf{x}) : \mathbf{x} \in X^m\}$.

Example



The Vapnik-Chervonenkis Dimension

Definition

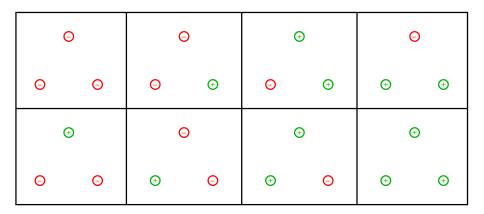
A sample **x** of size *m* is *shattered* by \mathcal{H} , or \mathcal{H} *shatters* **x**, if \mathcal{H} can give all 2^m possible classifications of **x**.

Definition (VC dimension)

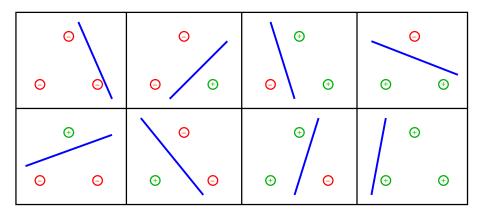
$$VC\text{-}dim(\mathcal{C}) = \max\{m : \Pi_{\mathcal{C}}(m) = 2^m\}$$

- Our ray example has VC-dim (Rays) = 1.
 - One point is shattered.
 - Two points are not shattered (+, -)
- Lower Bound \implies Explicit construction that achieves 2^m .
- Upper Bound ⇒ For any sample x of length m we can not achieve 2^m.

Configurations of 3 Points in 2D



Halfspaces Shatter 3 Points in 2D



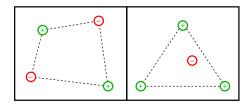
Question

Can we shatter 4 points ?

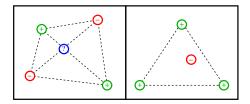
D. Diochnos (OU - CS)

Computational Learning Theory Overview

Can Halfspaces Shatter 4 Points in 2D?



Halfspaces can not Shatter 4 Points in 2D



Theorem (Radon)

Any set of d + 2 points in \mathbf{R}^d can be partitioned into two (disjoint) sets whose convex hulls intersect.

Corollary

- *VC-dim*(*HALFSPACES*) = 3 in 2 dimensions.
- *VC-dim* (*HALFSPACES*) = d + 1 in $d \ge 1$ dimensions.

Sauer's Lemma

Lemma (Sauer's Lemma)

Let $d \ge 0$ and $m \ge 1$ be given integers and let \mathcal{H} be a hypothesis space with VC-dim $(\mathcal{H}) = d$. Then

$$\Pi_{\mathcal{H}}(m) \leq 1 + \binom{m}{1} + \binom{m}{2} + \cdots + \binom{m}{d} = \Phi(d, m).$$

Proposition

For all
$$m \geqslant d \geqslant 1$$
 , $\Phi(d, m) < \left(rac{em}{d}
ight)^d$.

VC-Dimension

Theorem

Let \mathbb{C} have finite VC-dim (\mathbb{C}) = d \ge 1 and moreover let $0 < \delta$, $\varepsilon < 1$. Then,

$$m \ge \left\lceil \frac{4}{\varepsilon} \cdot \left(d \cdot \lg \left(\frac{12}{\varepsilon} \right) + \lg \left(\frac{2}{\delta} \right) \right)
ight
ceil$$

samples guarantee that any consistent hypothesis has small error with high probability (in the PAC-learning sense).

• We still need an efficient algorithm to efficiently PAC-learn the class.