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Preliminaries

Learning Theory in One Line

Find a Good Approximation of a Function
with High Probability
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Computational Learning Theory

Goal (Good Approximation with High Probability)

There is a function ¢ over a space X. One wants to come up (in a
reasonable amount of time) with a function h such that h is a good
approximation of ¢ with high probability.

Description (Parameters and Terminology)
@ X: Instance Space
@ c < C: Target Concept h € H: Hypothesis
@ Good Approximation: Small Error ¢
@ High Probability: Confidence 1 — &
@ Reasonable Amount of Time: Polynomial in n, 1/¢, /s, size(c)

Example
X ={0,1}" cC=Xx1 \Xo A\ X3 h=x1/A\Xs
o’
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Probably Approximately Correct (PAC) Learning

@ There is an arbitrary, unknown distribution D over X.

@ Learn from poly (1,1) many examples (x, c(x)), where x ~ D.

@ Riskp (h,c) =Pry_p (h(x) #c(x)).

X c

Goal ([Valiant, 1984])
Pr (Riskp (h,c) <e)>1-5.

D. Diochnos (OU - CS) Computational Learning Theory Overview Fall 2020

5/14



Efficiently PAC Learning Conjunctions

Let X = {X1 , X2, X3, X4, X5} andc = Xq /\Ys N Xy.
@ Request m examples and look on the positive ones.

example | hypothesis h
‘ X1 /\71 /\X2 /\72/\X3 /\73/\X4/\74/\X5 A75

((11010), +) X1 /\ Xo A\ X3 /\ X4 /\ X5
((10010), +) X1 N\ X3 /\ X4 /\ X5
((10011), +) X1 A X3 A X4

Theorem (PAC Learning of Finite Concept Classes)

. . 1 1
For every distribution D, drawing m > . <In IC] + In 6) examples

guarantees that any consistent hypothesis h satisfies
Pr(error(h,c) <e)>1-56.

@ For conjunctions || = 37 + 1.
@ Efficiently PAC learning because the algorithm runs in poly-time.
@ What about infinite concept classes (e.g. halfspaces) ?
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PAC Learning and VC-Dimension

Different Classifications and the Growth Function

@ X=(Xxq1,Xo,..., Xm) is a set of m examples.

Number of Classifications TT4¢(x) of x by H: Distinct vectors
(h(x1),h(x2), ..., h(xm)) as h runs through .

o ng{(X) <2m,
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PAC Learning and VC-Dimension

Different Classifications and the Growth Function

@ X=(Xxq1,Xo,..., Xm) is a set of m examples.

Number of Classifications TT4¢(x) of x by H: Distinct vectors
(h(x1),h(x2), ..., h(xm)) as h runs through .

o ng{(X) <2m,

Growth Function: TTg(m) = max{TT¢(x) : x € XM}

Example

_ m points
Rays on a line: r_Jp%
+ +

. 4+ eees +
— , otherwise — Foeene

|+ ++

Mac(m) =m+1. R
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PAC Learning and VC-Dimension

The Vapnik-Chervonenkis Dimension

Definition
A sample x of size mis shattered by H, or H shatters x, if H can give
all 2™ possible classifications of x.

Definition (VC dimension)

VC-dim (@) = max{m : Te(m) = 2™

@ Our ray example has VC-dim (Rays) = 1.
@ One point is shattered.
o Two points are not shattered (-, —)
@ Lower Bound = Explicit construction that achieves 2.
@ Upper Bound — For any sample x of length m we can not
achieve 2.
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PAC Learning and VC-Dimension

Configurations of 3 Points in 2D
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PAC Learning and VC-Dimension

Halfspaces Shatter 3 Points in 2D
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Question
Can we shatter 4 points ?
D. Diochnos (OU - CS) Computational Learning Theory Overview Fall 2020 10/14



Can Halfspaces Shatter 4 Points in 2D?
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Halfspaces can not Shatter 4 Points in 2D

Theorem (Radon)

Any set of d + 2 points in R? can be partitioned into two (disjoint) sets
whose convex hulls intersect.

Corollary
@ VC-dim (HALFSPACES) = 3 in 2 dimensions.
@ VC-dim (HALFSPACES) =d +1ind > 1 dimensions.

v
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PAC Learning and VC-Dimension

Sauer’'s Lemma

Lemma (Sauer’s Lemma)

Letd > 0 and m > 1 be given integers and let H be a hypothesis
space with VC-dim (H) = d. Then

Mac(m) <1+ <’1”> + <'g> g <';7> — ®(d, m).

Proposition

Forallm>d>1, ®(d,m) < (en)? .
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VC-Dimension

Theorem
Let C have finite VC-dim (C) = d > 1 and moreover let0 < 6, ¢ < 1.

Then, . E (d.|g (f) +'g<§>ﬂ

samples guarantee that any consistent hypothesis has small error with
high probability (in the PAC-learning sense).

@ We still need an efficient algorithm to efficiently PAC-learn the
class.
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