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Preliminaries

Learning Theory in One Line

Find a Good Approximation of a Function

with High Probability
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Preliminaries

Computational Learning Theory

Goal (Good Approximation with High Probability)

There is a function c over a space X . One wants to come up (in a

reasonable amount of time) with a function h such that h is a good

approximation of c with high probability.

Description (Parameters and Terminology)

X : Instance Space

c ∈ C: Target Concept h ∈ H: Hypothesis

Good Approximation: Small Error ε

High Probability: Confidence 1 − δ

Reasonable Amount of Time: Polynomial in n, 1/ε, 1/δ, size(c)

Example

X = {0, 1}n c = x1 ∧ x2 ∧ x3 h = x1 ∧ x4
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PAC Learning and VC-Dimension

Probably Approximately Correct (PAC) Learning

There is an arbitrary, unknown distribution D over X .

Learn from poly
(

1
ε
, 1
δ

)

many examples (x , c(x)), where x ∼ D.

RiskD (h, c) = Prx∼D (h (x) , c (x)).

c

h +

−X

Goal ([Valiant, 1984])

Pr (RiskD (h, c) 6 ε) > 1 − δ .
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PAC Learning and VC-Dimension

Efficiently PAC Learning Conjunctions

Let X = {x1, x2, x3, x4, x5} and c = x1 ∧ x3 ∧ x4.

Request m examples and look on the positive ones.

example hypothesis h

x1 ∧ x1 ∧ x2 ∧ x2 ∧ x3 ∧ x3 ∧ x4 ∧ x4 ∧ x5 ∧ x5

((11010),+) x1 ∧ x2 ∧ x3 ∧ x4 ∧ x5

((10010),+) x1 ∧ x3 ∧ x4 ∧ x5

((10011),+) x1 ∧ x3 ∧ x4

Theorem (PAC Learning of Finite Concept Classes)

For every distribution D, drawing m >
1

ε
·

(

ln |C|+ ln
1

δ

)

examples

guarantees that any consistent hypothesis h satisfies

Pr (error (h, c) 6 ε) > 1 − δ .

For conjunctions |C| = 3n + 1.

Efficiently PAC learning because the algorithm runs in poly-time.

What about infinite concept classes (e.g. halfspaces) ?
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PAC Learning and VC-Dimension

Different Classifications and the Growth Function

x = (x1, x2, . . . , xm) is a set of m examples.

Number of Classifications ΠH(x) of x by H: Distinct vectors

(h(x1), h(x2), . . . , h(xm)) as h runs through H.

ΠH(x) 6 2m.
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PAC Learning and VC-Dimension

Different Classifications and the Growth Function

x = (x1, x2, . . . , xm) is a set of m examples.

Number of Classifications ΠH(x) of x by H: Distinct vectors

(h(x1), h(x2), . . . , h(xm)) as h runs through H.

ΠH(x) 6 2m.

Growth Function: ΠH(m) = max{ΠH(x) : x ∈ X m} .

Example

Rays on a line:

hϑ(x) =

{

+ , if x > ϑ

− , otherwise

ΠH(m) = m + 1 .

m points

R

+

+++++
++++++

−−−−−−
−−−−−

−
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PAC Learning and VC-Dimension

The Vapnik-Chervonenkis Dimension

Definition

A sample x of size m is shattered by H, or H shatters x, if H can give

all 2m possible classifications of x.

Definition (VC dimension)

VC-dim (C) = max{m : ΠC(m) = 2m}

Our ray example has VC-dim (Rays) = 1.

One point is shattered.

Two points are not shattered (+, −)

Lower Bound =⇒ Explicit construction that achieves 2m.

Upper Bound =⇒ For any sample x of length m we can not

achieve 2m.
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PAC Learning and VC-Dimension

Configurations of 3 Points in 2D
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PAC Learning and VC-Dimension

Halfspaces Shatter 3 Points in 2D
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Question

Can we shatter 4 points ?
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PAC Learning and VC-Dimension

Can Halfspaces Shatter 4 Points in 2D?
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PAC Learning and VC-Dimension

Halfspaces can not Shatter 4 Points in 2D

−

?

+

+

−

+

+

+

−

Theorem (Radon)

Any set of d + 2 points in Rd can be partitioned into two (disjoint) sets

whose convex hulls intersect.

Corollary

VC-dim (HALFSPACES) = 3 in 2 dimensions.

VC-dim (HALFSPACES) = d + 1 in d > 1 dimensions.
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PAC Learning and VC-Dimension

Sauer’s Lemma

Lemma (Sauer’s Lemma)

Let d > 0 and m > 1 be given integers and let H be a hypothesis

space with VC-dim (H) = d. Then

ΠH(m) 6 1 +

(

m

1

)

+

(

m

2

)

+ · · ·+

(

m

d

)

= Φ(d ,m).

Proposition

For all m > d > 1, Φ(d ,m) <
(

em
d

)d
.
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PAC Learning and VC-Dimension

VC-Dimension

Theorem

Let C have finite VC-dim (C) = d > 1 and moreover let 0 < δ, ε < 1.

Then,

m >

⌈

4

ε
·

(

d · lg

(

12

ε

)

+ lg

(

2

δ

))⌉

samples guarantee that any consistent hypothesis has small error with

high probability (in the PAC-learning sense).

We still need an efficient algorithm to efficiently PAC-learn the

class.
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