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Basics of Machine Learning Introduction

What is Machine Learning?

Machine learning is the subfield of computer science that gives
“computers the ability to learn without being explicitly programmed”.

- term coined by Arthur Samuel in 1959 while at IBM

The study of algorithms that can learn from data.
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Basics of Machine Learning Introduction

Another View of Machine Learning

Learning from historical data to make decisions about unseen data.

Traditional Programming

Data −→
Computer −→ Output

Program −→

Machine Learning

Data −→
Computer −→ Program

Output −→
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Basics of Machine Learning Introduction

When is Machine Learning a Good Idea?

Situations where ...
humans can not describe how they do a task

character recognition
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Basics of Machine Learning Introduction

When is Machine Learning a Good Idea?

Situations where ...
humans can not describe how they do a task

character recognition

the desired function changes frequently

recommend stock transactions

each user needs a customized function f

email spam / ham
email importance (perhaps delete without presenting?)
recommendations on Amazon
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Basics of Machine Learning Introduction

Can you write a program that recognizes these digits?
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Basics of Machine Learning We Need Bias

What Machine Learning Does

Class A Class B
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Basics of Machine Learning We Need Bias

What Machine Learning Does

Class A Class B

Want to be able to generalize the classification to unseen data.

http://ciml.info/ (Credit: Hal Daumé III)

D. Diochnos (OU – CS) Elements of Learning Theory Sep 28, 2020 8 / 48

http://ciml.info/


Basics of Machine Learning We Need Bias

Classify These

(Credit: Hal Daumé III)
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Basics of Machine Learning We Need Bias

Let’s See ...
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Basics of Machine Learning We Need Bias

Let’s See ...

Bird vs non-bird Flies vs not-flies

We need bias in order to be able to generalize to unseen data.
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Basics of Machine Learning We Need Bias

No Free-Lunch Theorems

Theorem 1

Let F be the set of all possible Boolean functions on n variables. Let
AccG (L) be the (generalization) accuracy of L on non-training examples.
Then, for any consistent learner L, it holds

1

|F|
·
∑

F

AccG (L) = 1/2 .
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Basics of Machine Learning We Need Bias

No Free-Lunch Theorems

Theorem 1

Let F be the set of all possible Boolean functions on n variables. Let
AccG (L) be the (generalization) accuracy of L on non-training examples.
Then, for any consistent learner L, it holds

1

|F|
·
∑

F

AccG (L) = 1/2 .

Proof Sketch.

Let S be the set of training examples.
Let f ∈ F such that AccG (f ) =

1
2 + δ.

Then, ∃f ′ ∈ F such that AccG (f
′) = 1

2 − δ.
To see why, note that we can have an f ′ ∈ F that satisfies:

{

(∀x ∈ S)(f ′(x) = f (x))
(∀x 6∈ S)(f ′(x) = ¬f (x))
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Basics of Machine Learning We Need Bias

No Free-Lunch Theorems

Theorem 2

Let F be the set of all possible Boolean functions on n variables. Let
AccG (L) be the (generalization) accuracy of L on non-training examples.
Then, for any consistent learner L, it holds

1

|F|
·
∑

F

AccG (L) = 1/2 .

Corollary 3

For any two learners L1, L2, if there exists a learning problem P such that
AccG (L1) > AccG (L2), then there exists another learning problem P ′ such
that AccG (L1) < AccG (L2).
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A Theory for Computational Learning

Outline

1 Basics of Machine Learning
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A Theory for Computational Learning

Some Basic Questions

What kind of concepts are easy or hard to learn?
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A Theory for Computational Learning

Some Basic Questions

What kind of concepts are easy or hard to learn?

How many examples are enough?

How many examples are necessary?

Which algorithm will we use to process the examples?
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A Theory for Computational Learning

Some Basic Questions

What kind of concepts are easy or hard to learn?

How many examples are enough?

How many examples are necessary?

Which algorithm will we use to process the examples?

Does it matter which algorithm we select?

How frequently will our solution make mistakes during prediction?

D. Diochnos (OU – CS) Elements of Learning Theory Sep 28, 2020 14 / 48



A Theory for Computational Learning

Some Basic Questions

What kind of concepts are easy or hard to learn?

How many examples are enough?

How many examples are necessary?

Which algorithm will we use to process the examples?

Does it matter which algorithm we select?

How frequently will our solution make mistakes during prediction?

How confident are we about such a claim?
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A Theory for Computational Learning

The Main Goal of Computational Learning Theory

Find a good approximation of a function with high probability
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A Theory for Computational Learning

Computational Learning Theory

Goal (Good Approximation with High Probability)
There is a function c over a space X . One wants to come up (in a
reasonable amount of time) with a function h such that h is a good
approximation of c with high probability.

Description 1 (Parameters and Terminology)

X : Instance Space (say, {0, 1}n) Y: Labels (say, {+,−})

c ∈ C: Target concept belonging to a concept class

h ∈ H: Hypothesis belonging to a hypothesis class

Good Approximation: Small Risk (Error) ε

High Probability: Confidence 1 − δ

Reasonable Amount of Time: Polynomial in n, 1/ε, 1/δ, size(c)

Realizability assumption: (∀c ∈ C)(∃h ∈ H)(∀x ∈ X ) [h(x) = c(x)]
(H is at least as expressive as C; we will see an example later)
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A Theory for Computational Learning

Probably Approximately Correct (PAC) Learning

There is an arbitrary, unknown distribution D over X .

Learn from poly
(

1
ε
, 1
δ

)

many examples (x , c(x)), where x ∼ D.

RiskD (h, c) = Prx∼D (h (x) 6= c (x)).

c

h +

−X

Goal 1 ([Valiant, 1984])

Pr (RiskD (h, c) ≤ ε) ≥ 1 − δ .
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A Theory for Computational Learning

Typical Functions Used for Learning

Monotone Conjunctions/Monomials (Boolean AND of some variables
chosen from {x1, x2, . . . , xn})

e.g., c = x2 ∧ x5 ∧ x8 (sometimes simply write c = x2x5x8)

|H| = 2n.
Sometimes we may need to include the FALSE function (e.g., for
VC-dimension arguments) even if such a function can not be
represented by combining variables. In these cases |H| = 2n + 1.
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|H| = 2n.
Sometimes we may need to include the FALSE function (e.g., for
VC-dimension arguments) even if such a function can not be
represented by combining variables. In these cases |H| = 2n + 1.

Conjunctions/Monomials (allow negated variables)
e.g., c = x2 ∧ x5 ∧ x8 (c = x2x5x8)

|H| = 3n + 1. (including the constant FALSE function.)
FALSE function can be represented: e.g., c ′ = x1 ∧ x1.
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A Theory for Computational Learning

Typical Functions Used for Learning

Monotone Conjunctions/Monomials (Boolean AND of some variables
chosen from {x1, x2, . . . , xn})

e.g., c = x2 ∧ x5 ∧ x8 (sometimes simply write c = x2x5x8)

|H| = 2n.
Sometimes we may need to include the FALSE function (e.g., for
VC-dimension arguments) even if such a function can not be
represented by combining variables. In these cases |H| = 2n + 1.

Conjunctions/Monomials (allow negated variables)
e.g., c = x2 ∧ x5 ∧ x8 (c = x2x5x8)

|H| = 3n + 1. (including the constant FALSE function.)
FALSE function can be represented: e.g., c ′ = x1 ∧ x1.

Halfspaces e.g., c = sgn(w0 + w1 · x1 + w2 · x2 + . . .+ wn · xn)

sgn(z) =

{

+1 , if z > 0
−1 , if z ≤ 0

|H| = ∞.D. Diochnos (OU – CS) Elements of Learning Theory Sep 28, 2020 18 / 48



A Theory for Computational Learning

Why These Functions Used as Toy Examples?

Exhibit bias.

(Monotone) conjunctions is one of the most basic ways of
selecting/combining features/constraints in a prediction mechanism.

Building blocks for richer classes of functions that are less understood;
e.g., general DNF formulae.
(e.g., learning monotone DNF formulae over the uniform distribution
is an open problem.)

Directly or indirectly, applications to logic, circuit complexity, etc.

Typical benchmarks as they usually provide interesting, but non-trivial
insights of the definitions, the bounds that we should expect to get,
etc.

Can also be useful in contexts of other disciplines (see next slide).
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A Theory for Computational Learning

Why These Functions Used as Toy Examples?

Exhibit bias.

(Monotone) conjunctions is one of the most basic ways of
selecting/combining features/constraints in a prediction mechanism.

Building blocks for richer classes of functions that are less understood;
e.g., general DNF formulae.
(e.g., learning monotone DNF formulae over the uniform distribution
is an open problem.)

Directly or indirectly, applications to logic, circuit complexity, etc.

Typical benchmarks as they usually provide interesting, but non-trivial
insights of the definitions, the bounds that we should expect to get,
etc.

Can also be useful in contexts of other disciplines (see next slide).

We will start with PAC learning (general) conjunctions.
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A Theory for Computational Learning

Finding All Common Properties of a Set of Objects

Let X = {0, 1}6 and c = x1 ∧ x3 ∧ x4.

Request m examples and look at the positive ones.

Delete the variables that are falsified by the positive examples.

A Study of Thinking [Bruner, Goodnow, Austin, 1956]
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A Theory for Computational Learning

Finding All Common Properties of a Set of Objects

Let X = {0, 1}6 and c = x1 ∧ x3 ∧ x4.

Request m examples and look at the positive ones.

Delete the variables that are falsified by the positive examples.

A Study of Thinking [Bruner, Goodnow, Austin, 1956]

example hypothesis h

x1 ∧ x1 ∧ x2 ∧ x2 ∧ x3 ∧ x3 ∧ x4 ∧ x4 ∧ x5 ∧ x5 ∧ x6 ∧ x6

((110011),+) x1 ∧ x2 ∧ x3 ∧ x4 ∧ x5 ∧ x6

((010011),+) x2 ∧ x3 ∧ x4 ∧ x5 ∧ x6

((010111),+) x2 ∧ x3 ∧ x5 ∧x6
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A Theory for Computational Learning

Finding All Common Properties of a Set of Objects

Let X = {0, 1}6 and c = x1 ∧ x3 ∧ x4.

Request m examples and look at the positive ones.

Delete the variables that are falsified by the positive examples.

A Study of Thinking [Bruner, Goodnow, Austin, 1956]

example hypothesis h

x1 ∧ x1 ∧ x2 ∧ x2 ∧ x3 ∧ x3 ∧ x4 ∧ x4 ∧ x5 ∧ x5 ∧ x6 ∧ x6

((110011),+) x1 ∧ x2 ∧ x3 ∧ x4 ∧ x5 ∧ x6

((010011),+) x2 ∧ x3 ∧ x4 ∧ x5 ∧ x6

((010111),+) x2 ∧ x3 ∧ x5 ∧x6

Is such an algorithm good for PAC learning?
YES, provided m is large enough.
Creates a consistent hypothesis:

Predicts correct label for each training example.
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A Theory for Computational Learning PAC Learning Finite Concept Classes

How Many Examples are Enough?

Theorem 4 (PAC Learning of Finite Concept Classes)

Let H contain a finite amount |H| of functions. For every distribution D,

drawing m ≥
1

ε
·

(

ln |H|+ ln
1

δ

)

examples are enough to guarantee that

any consistent hypothesis h satisfies Pr (RiskD (h, c) ≤ ε) ≥ 1 − δ .
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Proof Idea.

Consider all the hypotheses that make mistakes frequently.
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How Many Examples are Enough?

Theorem 4 (PAC Learning of Finite Concept Classes)

Let H contain a finite amount |H| of functions. For every distribution D,

drawing m ≥
1

ε
·

(

ln |H|+ ln
1

δ

)

examples are enough to guarantee that

any consistent hypothesis h satisfies Pr (RiskD (h, c) ≤ ε) ≥ 1 − δ .

Proof Idea.

Consider all the hypotheses that make mistakes frequently.

As we are seeing more and more training examples, hypotheses that make
mistakes frequently should make at least one mistake in the entire sequence
of the training examples.
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A Theory for Computational Learning PAC Learning Finite Concept Classes

How Many Examples are Enough?

Theorem 4 (PAC Learning of Finite Concept Classes)

Let H contain a finite amount |H| of functions. For every distribution D,

drawing m ≥
1

ε
·

(

ln |H|+ ln
1

δ

)

examples are enough to guarantee that

any consistent hypothesis h satisfies Pr (RiskD (h, c) ≤ ε) ≥ 1 − δ .

Proof Idea.

Consider all the hypotheses that make mistakes frequently.

As we are seeing more and more training examples, hypotheses that make
mistakes frequently should make at least one mistake in the entire sequence
of the training examples.

Draw enough many training examples to guarantee with high probability
that all such hypotheses that make mistakes frequently, will also make at
least one mistake in the training examples that we have drawn.
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A Theory for Computational Learning PAC Learning Finite Concept Classes

How Many Examples are Enough?

Theorem 4 (PAC Learning of Finite Concept Classes)

Let H contain a finite amount |H| of functions. For every distribution D,

drawing m ≥
1

ε
·

(

ln |H|+ ln
1

δ

)

examples are enough to guarantee that

any consistent hypothesis h satisfies Pr (RiskD (h, c) ≤ ε) ≥ 1 − δ .

Proof Idea.

Consider all the hypotheses that make mistakes frequently.

As we are seeing more and more training examples, hypotheses that make
mistakes frequently should make at least one mistake in the entire sequence
of the training examples.

Draw enough many training examples to guarantee with high probability
that all such hypotheses that make mistakes frequently, will also make at
least one mistake in the training examples that we have drawn.

Return some hypothesis that never made a mistake.
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A Theory for Computational Learning PAC Learning Finite Concept Classes

How Many Examples are Enough?

Theorem 5 (PAC Learning of Finite Concept Classes)

Let H contain a finite amount |H| of functions. For every distribution D,

drawing m ≥
1

ε
·

(

ln |H|+ ln
1

δ

)

examples are enough to guarantee that

any consistent hypothesis h satisfies Pr (RiskD (h, c) ≤ ε) ≥ 1 − δ .

Proof.

Call a hypothesis h bad if RiskD (h, c) > ε.
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A Theory for Computational Learning PAC Learning Finite Concept Classes

How Many Examples are Enough?

Theorem 5 (PAC Learning of Finite Concept Classes)

Let H contain a finite amount |H| of functions. For every distribution D,

drawing m ≥
1

ε
·

(

ln |H|+ ln
1

δ

)

examples are enough to guarantee that

any consistent hypothesis h satisfies Pr (RiskD (h, c) ≤ ε) ≥ 1 − δ .

Proof.

Call a hypothesis h bad if RiskD (h, c) > ε. Then for such a bad h,

Pr (h is consistent with the first training example) < (1 − ε)
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A Theory for Computational Learning PAC Learning Finite Concept Classes

How Many Examples are Enough?

Theorem 5 (PAC Learning of Finite Concept Classes)

Let H contain a finite amount |H| of functions. For every distribution D,

drawing m ≥
1

ε
·

(

ln |H|+ ln
1

δ

)

examples are enough to guarantee that

any consistent hypothesis h satisfies Pr (RiskD (h, c) ≤ ε) ≥ 1 − δ .

Proof.

Call a hypothesis h bad if RiskD (h, c) > ε. Then for such a bad h,

Pr (h is consistent with the first training example) < (1 − ε)

Pr (h is consistent with all m training examples) < (1 − ε)m
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A Theory for Computational Learning PAC Learning Finite Concept Classes

How Many Examples are Enough?

Theorem 5 (PAC Learning of Finite Concept Classes)

Let H contain a finite amount |H| of functions. For every distribution D,

drawing m ≥
1

ε
·

(

ln |H|+ ln
1

δ

)

examples are enough to guarantee that

any consistent hypothesis h satisfies Pr (RiskD (h, c) ≤ ε) ≥ 1 − δ .

Proof.

Call a hypothesis h bad if RiskD (h, c) > ε. Then for such a bad h,

Pr (h is consistent with the first training example) < (1 − ε)

Pr (h is consistent with all m training examples) < (1 − ε)m

Let h1, h2, . . . , hk be all the k hypotheses from H that are bad. For each such
bad hypothesis hi with i ∈ {1, . . . , k}, consider the bad event

Bi ≡ hi is consistent with all m training examples .

Pr (B1 ∨ . . . ∨ Bk) ≤
∑k

i=1
Pr (Bi ) < k · (1−ε)m ≤ |H| (1−ε)m ≤ |H| ·e−ε·m.
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A Theory for Computational Learning PAC Learning Finite Concept Classes

How Many Examples are Enough?

Theorem 6 (PAC Learning of Finite Concept Classes)

Let H be a hypothesis space s.t. |H| < ∞. For every distribution D,

drawing m ≥
1

ε
·

(

ln |H|+ ln
1

δ

)

examples are enough to guarantee that

any consistent hypothesis h satisfies Pr (RiskD (h, c) ≤ ε) ≥ 1 − δ .

Theorem resolves the statistical question on m

How many examples are enough?
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How Many Examples are Enough?

Theorem 6 (PAC Learning of Finite Concept Classes)

Let H be a hypothesis space s.t. |H| < ∞. For every distribution D,

drawing m ≥
1

ε
·

(

ln |H|+ ln
1

δ

)

examples are enough to guarantee that

any consistent hypothesis h satisfies Pr (RiskD (h, c) ≤ ε) ≥ 1 − δ .

Theorem resolves the statistical question on m

How many examples are enough?

We still need to resolve the computational question
(algorithm returning h)
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A Theory for Computational Learning PAC Learning Finite Concept Classes

How Many Examples are Enough?

Theorem 6 (PAC Learning of Finite Concept Classes)

Let H be a hypothesis space s.t. |H| < ∞. For every distribution D,

drawing m ≥
1

ε
·

(

ln |H|+ ln
1

δ

)

examples are enough to guarantee that

any consistent hypothesis h satisfies Pr (RiskD (h, c) ≤ ε) ≥ 1 − δ .

Theorem resolves the statistical question on m

How many examples are enough?

We still need to resolve the computational question
(algorithm returning h)

PAC learning conjunctions, with ε = 1/100 and δ = 0.05.

|H| = 3n + 1 ≤ 3n + 3n + 3n = 3n+1
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A Theory for Computational Learning PAC Learning Finite Concept Classes

How Many Examples are Enough?

Theorem 6 (PAC Learning of Finite Concept Classes)

Let H be a hypothesis space s.t. |H| < ∞. For every distribution D,

drawing m ≥
1

ε
·

(

ln |H|+ ln
1

δ

)

examples are enough to guarantee that

any consistent hypothesis h satisfies Pr (RiskD (h, c) ≤ ε) ≥ 1 − δ .

Theorem resolves the statistical question on m

How many examples are enough?

We still need to resolve the computational question
(algorithm returning h)

PAC learning conjunctions, with ε = 1/100 and δ = 0.05.

|H| = 3n + 1 ≤ 3n + 3n + 3n = 3n+1

Theorem imples that when n = 20 (220 truth assignments in {0, 1}20)
only m = 2607 examples are enough! (less than 0.2% of |X |)
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A Theory for Computational Learning Intractability in Learning

Can we Learn a Disjunction of k ≥ 2 Conjunctions?

Say k = 3. Then a function looks like
(x1 ∧ x5) ∨ (x2 ∧ x4 ∧ x7) ∨ (x3 ∧ x4 ∧ x5 ∧ x7 ∧ x8).

Then, |C| ≤ (3n + 1) · (3n + 1) · (3n + 1) ≤ 3n+1 · 3n+1 · 3n+1 = 33n+3.

The previous theorem implies m =
⌈

1
ε
· ln

(

33n+3

δ

)⌉

=
⌈

3n+3
ε

· ln
(

3
δ

)⌉

training examples are more than enough for PAC learning the class.

So the question becomes:

Is there an algorithm for efficiently PAC learning such functions?
The answer is quite surprising!
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Can we Learn a Disjunction of k ≥ 2 Conjunctions?

Say k = 3. Then a function looks like
(x1 ∧ x5) ∨ (x2 ∧ x4 ∧ x7) ∨ (x3 ∧ x4 ∧ x5 ∧ x7 ∧ x8).

Then, |C| ≤ (3n + 1) · (3n + 1) · (3n + 1) ≤ 3n+1 · 3n+1 · 3n+1 = 33n+3.

The previous theorem implies m =
⌈

1
ε
· ln

(

33n+3

δ

)⌉

=
⌈

3n+3
ε

· ln
(

3
δ

)⌉

training examples are more than enough for PAC learning the class.

So the question becomes:

Is there an algorithm for efficiently PAC learning such functions?
The answer is quite surprising!

Assuming NP 6= RP , we can not do that efficiently if we use H = C.
(proper learning)
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A Theory for Computational Learning Intractability in Learning

Can we Learn a Disjunction of k ≥ 2 Conjunctions?

Say k = 3. Then a function looks like
(x1 ∧ x5) ∨ (x2 ∧ x4 ∧ x7) ∨ (x3 ∧ x4 ∧ x5 ∧ x7 ∧ x8).

Then, |C| ≤ (3n + 1) · (3n + 1) · (3n + 1) ≤ 3n+1 · 3n+1 · 3n+1 = 33n+3.

The previous theorem implies m =
⌈

1
ε
· ln

(

33n+3

δ

)⌉

=
⌈

3n+3
ε

· ln
(

3
δ

)⌉

training examples are more than enough for PAC learning the class.

So the question becomes:

Is there an algorithm for efficiently PAC learning such functions?
The answer is quite surprising!

Assuming NP 6= RP , we can not do that efficiently if we use H = C.
(proper learning)

However, we can PAC learn C efficiently if we use a larger class of
functions as our hypothesis class H.
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A Theory for Computational Learning Intractability in Learning

The Complexity Class RP

Randomized Polynomial (RP) time. Complexity class of problems for
which a non-deterministic Turing machine:

runs in poly-time w.r.t. the input size,

if the correct answer is NO it returns NO,

if the correct answer is YES it returns YES with probability p ≥ 1/2.

(a YES answer is always correct!)
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runs in poly-time w.r.t. the input size,

if the correct answer is NO it returns NO,

if the correct answer is YES it returns YES with probability p ≥ 1/2.

(a YES answer is always correct!)

For correct answer being YES , we get misleading k consecutive NO’s
in k runs with probability ≤ 2−k .

(Receiving a YES would change our evaluation.)
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which a non-deterministic Turing machine:

runs in poly-time w.r.t. the input size,

if the correct answer is NO it returns NO,

if the correct answer is YES it returns YES with probability p ≥ 1/2.

(a YES answer is always correct!)

For correct answer being YES , we get misleading k consecutive NO’s
in k runs with probability ≤ 2−k .

(Receiving a YES would change our evaluation.)

Class co-RP: NO is always correct; YES might be incorrect.

It holds: P ⊆ RP ⊆ NP .
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The Complexity Class RP

Randomized Polynomial (RP) time. Complexity class of problems for
which a non-deterministic Turing machine:

runs in poly-time w.r.t. the input size,

if the correct answer is NO it returns NO,

if the correct answer is YES it returns YES with probability p ≥ 1/2.

(a YES answer is always correct!)

For correct answer being YES , we get misleading k consecutive NO’s
in k runs with probability ≤ 2−k .

(Receiving a YES would change our evaluation.)

Class co-RP: NO is always correct; YES might be incorrect.

It holds: P ⊆ RP ⊆ NP .

Alternative definition: In RP the NTM accepts a constant fraction of the
computation paths. (In NP we only need one accepting path.) This
immediately shows that RP ⊆ NP .
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A Theory for Computational Learning Intractability in Learning

The Complexity Class RP

Randomized Polynomial (RP) time. Complexity class of problems for
which a non-deterministic Turing machine:

runs in poly-time w.r.t. the input size,

if the correct answer is NO it returns NO,

if the correct answer is YES it returns YES with probability p ≥ 1/2.

(a YES answer is always correct!)

For correct answer being YES , we get misleading k consecutive NO’s
in k runs with probability ≤ 2−k .

(Receiving a YES would change our evaluation.)

Class co-RP: NO is always correct; YES might be incorrect.

It holds: P ⊆ RP ⊆ NP .

Alternative definition: In RP the NTM accepts a constant fraction of the
computation paths. (In NP we only need one accepting path.) This
immediately shows that RP ⊆ NP .

Let us return to our problem now.
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A Theory for Computational Learning Intractability in Learning

An Intractability Result

Theorem 7

If RP 6= NP , the representation class of k-term DNF formulae is not
efficiently PAC learnable for any k ≥ 2.

Proof Idea: Reduce Graph 3-Coloring problem to the problem of finding a
consistent 3-term DNF formula with a sample SG = S+

G ∪ S−

G .

1

2

3

4

5

〈(0, 1, 1, 1, 1),+〉

〈(1, 0, 1, 1, 1),+〉

〈(1, 1, 0, 1, 1),+〉

〈(1, 1, 1, 0, 1),+〉

〈(1, 1, 1, 1, 0),+〉

〈(0, 0, 1, 1, 1),−〉

〈(0, 1, 0, 1, 1),−〉

〈(1, 0, 0, 1, 1),−〉

〈(1, 0, 1, 1, 0),−〉

〈(1, 1, 0, 1, 0),−〉

〈(1, 1, 1, 0, 0),−〉

Positive examples encode the vertices of the given graph.
Negative examples encode the edges of the given graph.
Show: G is 3-colorable iff SG is consistent with some 3-term DNF.
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A Theory for Computational Learning Intractability in Learning

G is 3-colorable ⇒ SG consistent with some 3-term DNF

1

2

3

4

5

〈(0, 1, 1, 1, 1),+〉

〈(1, 0, 1, 1, 1),+〉

〈(1, 1, 0, 1, 1),+〉

〈(1, 1, 1, 0, 1),+〉

〈(1, 1, 1, 1, 0),+〉

〈(0, 0, 1, 1, 1),−〉

〈(0, 1, 0, 1, 1),−〉

〈(1, 0, 0, 1, 1),−〉

〈(1, 0, 1, 1, 0),−〉

〈(1, 1, 0, 1, 0),−〉

〈(1, 1, 1, 0, 0),−〉node color

1 red

2 blue

3 green

4 red

5 blue

=⇒







Tr = x2 ∧ x3 ∧ x5

Tb = x1 ∧ x3 ∧ x4

Tg = x1 ∧ x2 ∧ x4 ∧ x5

=⇒ ϕ = Tr ∨ Tb ∨ Tg

Consider a positive example v(i) ∈ S+
G . Let color(node i) = red

(similar argument for other colors). Then, Tr is a conjunction of
non-red nodes, so v(i) satisfies Tr (and therefore ϕ).
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A Theory for Computational Learning Intractability in Learning

G is 3-colorable ⇒ SG consistent with some 3-term DNF

1

2

3

4

5

〈(0, 1, 1, 1, 1),+〉

〈(1, 0, 1, 1, 1),+〉

〈(1, 1, 0, 1, 1),+〉

〈(1, 1, 1, 0, 1),+〉

〈(1, 1, 1, 1, 0),+〉

〈(0, 0, 1, 1, 1),−〉

〈(0, 1, 0, 1, 1),−〉

〈(1, 0, 0, 1, 1),−〉

〈(1, 0, 1, 1, 0),−〉

〈(1, 1, 0, 1, 0),−〉

〈(1, 1, 1, 0, 0),−〉node color

1 red

2 blue

3 green

4 red

5 blue

=⇒







Tr = x2 ∧ x3 ∧ x5

Tb = x1 ∧ x3 ∧ x4

Tg = x1 ∧ x2 ∧ x4 ∧ x5

=⇒ ϕ = Tr ∨ Tb ∨ Tg

Let e(i , j) ∈ S−

G . A valid 3-coloring with nodes i and j connected by an edge

implies that they have a different color. But e(i , j) will falsify at least one of

the variables in the term (say Tr ) since at least one of the two nodes must

have color other than red and is therefore included in the term Tr .
D. Diochnos (OU – CS) Elements of Learning Theory Sep 28, 2020 28 / 48



A Theory for Computational Learning Intractability in Learning

SG consistent with some 3-term DNF ⇒ G is 3-colorable
Let ϕ = T r ∨ T b ∨ T g be consistent with SG .

We claim that the following coloring is valid:

color node i red if v(i) ∈ S+
G satisfies Tr .

color node i blue if v(i) ∈ S+
G satisfies Tb.

color node i green if v(i) ∈ S+
G satisfies Tg .

(break ties arbitrarily if v(i) ∈ S+
G satisfies more than one term)
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Let ϕ = T r ∨ T b ∨ T g be consistent with SG .

We claim that the following coloring is valid:

color node i red if v(i) ∈ S+
G satisfies Tr .

color node i blue if v(i) ∈ S+
G satisfies Tb.

color node i green if v(i) ∈ S+
G satisfies Tg .

(break ties arbitrarily if v(i) ∈ S+
G satisfies more than one term)

Since ϕ is consistent with SG , every v(i) ∈ S+
G satisfies some term ⇒

every node is assigned a color.
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A Theory for Computational Learning Intractability in Learning

SG consistent with some 3-term DNF ⇒ G is 3-colorable
Let ϕ = T r ∨ T b ∨ T g be consistent with SG .

We claim that the following coloring is valid:

color node i red if v(i) ∈ S+
G satisfies Tr .

color node i blue if v(i) ∈ S+
G satisfies Tb.

color node i green if v(i) ∈ S+
G satisfies Tg .

(break ties arbitrarily if v(i) ∈ S+
G satisfies more than one term)

Since ϕ is consistent with SG , every v(i) ∈ S+
G satisfies some term ⇒

every node is assigned a color.

Suppose nodes i and j are assigned the same color (say red). Then
both v(i) and v(j) satisfy term Tr . ⇒ xi 6∈ Tr and moreover xi 6∈ Tr

because these two vectors satisfy Tr and their i-th bit is 0 in one case
and 1 in the other case.

But e(i , j) and v(j) differ only in their i-th bit and if v(j) satisfies Tr ,
so does e(i , j). But then this means e(i , j) 6∈ S−

G since ϕ is consistent
with SG . Therefore, (i , j) is not an edge in G as required.
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A Theory for Computational Learning Intractability in Learning

Why the Reduction is About RP?

PAC learning should work for every small ε and every small δ.

Work against this definition.

If we have a sample S of m training examples (say, all distinct), a PAC
learning algorithm should also be able to learn these m examples to
error ε = 1

m+1 even when the distribution on these points is uniform;

i.e., for every (x , y) ∈ S it holds Prx∼D (x) = 1
m

.
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Why the Reduction is About RP?

PAC learning should work for every small ε and every small δ.

Work against this definition.

If we have a sample S of m training examples (say, all distinct), a PAC
learning algorithm should also be able to learn these m examples to
error ε = 1

m+1 even when the distribution on these points is uniform;

i.e., for every (x , y) ∈ S it holds Prx∼D (x) = 1
m

.

But then this means that the algorithm should create a consistent
hypothesis with the training examples.

(Otherwise the risk would be very large.)

Per the PAC criterion, a consistent hypothesis will be created with
high probability.

This explains why we care about RP .
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A Theory for Computational Learning Improper Learning to Overcome Intractability

Learning 3-Term DNF Formulae using 3-CNF Formulae

We use the fact:

(u∧v)∨(w∧z) = (u∨w)∧(u∨z)∧(v∨w)∧(v∨z)

So, a 3-term DNF formula can be represented as a 3-CNF formula;
i.e., a CNF formula where each clause has at most 3 literals.

T1∨T2∨T3 =
∧

u∈T1,v∈T2,w∈T3(u∨v∨w)

In general, this construction can take a k-term DNF formula and
represent it with a k-CNF formula.

Reduce the problem of learning a k-CNF formula to learning
conjunctions:

For every triple (u, v ,w) over the original variables {x1, . . . , xn}, create
a variable yu,v ,w corresponding to this triple.
Hence number of variables yu,v ,w is at most (2n)3, which is O(n3).

(For k-term DNF the corresponding y ’s will be O(nk) in total.)
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A Theory for Computational Learning Improper Learning to Overcome Intractability

Learning 3-Term DNF Formulae using 3-CNF Formulae

3-CNF over {x1, . . . , xn} is equivalent to a 3-CNF over the new
variables {yu,v ,w}.

So:

A truth assignment σ ∈ {0, 1}n corresponding to the variables
{x1, . . . , xn} can be converted in time O(n3) to a truth assignment
corresponding to the variables {yu,v ,w}.

So, we can run our algorithm for learning conjunctions in polynomial
time over the variables {yu,v ,w}.

Find-S may run in time O(mn); for m examples of bitsize n each.
In the new setting: n′ 7→ (2n)3 and m′ ≈ O(n′) = O(n3).

Once we are done learning, we can convert the solution that uses the
variables {yu,v ,w} back to {x1, . . . , xn} by simply expanding each
variable {yu,v ,w} to the clause (u ∨ v ∨ w).
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A Theory for Computational Learning Improper Learning to Overcome Intractability

Learning 3-Term DNF Formulae using 3-CNF Formulae

Finally, we need to argue that the solution that we compute indeed has low
risk.

Let c be the target 3-CNF and D the target distribution over {0, 1}n.
Let c ′ be the target 3-CNF using the variables {yu,v ,w} and D′ the
(induced) distribution over the assignments to the {yu,v ,w} variables.
We need to argue that if h′ has risk less than ε, so does h.

For σ1,σ2 ∈ {0, 1}n with σ1 6= σ2, it follows that we have σ′

1
6= σ′

2
.

So, h′(σ′) 6= c ′(σ′) ⇒ there is a unique preimage σ ∈ {0, 1}n such that
h(σ) 6= c(σ) and the weight of σ under D is the same as that of σ′

under D′.

(We have used the fact that our algorithm learns under any distribution.)

For example, let D be the uniform distribution over {0, 1}n; i.e., each
variable in the truth assignment is satisfied with probability 1/2.
Under D′, a variable yu,v ,w corresponding to the clause (u ∨ v ∨ w) is
satisfied with probability 7/8. Similarly, yu,u,u is satisfied with
probability 1/2, or yu,u,u is satisfied with probability 1.
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A Theory for Computational Learning VC Dimension and Sample Complexity Bounds

How many examples are enough?

What if |H| = ∞?
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A Theory for Computational Learning VC Dimension and Sample Complexity Bounds

Different Classifications and the Growth Function

x = (x1, x2, . . . , xm) is a set of m examples.

Number of Classifications ΠH(x) of x by H: Distinct vectors
(h(x1), h(x2), . . . , h(xm)) as h runs through H.

ΠH(x) ≤ 2m.
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Different Classifications and the Growth Function

x = (x1, x2, . . . , xm) is a set of m examples.

Number of Classifications ΠH(x) of x by H: Distinct vectors
(h(x1), h(x2), . . . , h(xm)) as h runs through H.

ΠH(x) ≤ 2m.

Growth Function: ΠH(m) = max{ΠH(x) : x ∈ Xm} .

Example 8

Rays on a line:

hϑ(x) =

{

+ , if x ≥ ϑ

− , otherwise

ΠH(m) = m + 1 .

m points

R

+

+++++
++++++

−−−−−−
−−−−−

−
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A Theory for Computational Learning VC Dimension and Sample Complexity Bounds

The Vapnik-Chervonenkis Dimension

Definition 9

A sample x of size m is shattered by H, or H shatters x, if H can give all
2m possible classifications of x.

Definition 10 (VC dimension)

VC -dim (C) = max{m : ΠC(m) = 2m}

Our ray example has VC -dim (Rays) = 1.

One point is shattered.
Two points are not shattered (+, −)

Lower Bound =⇒ Explicit construction that achieves 2m.

Upper Bound =⇒ For any sample x of length m we can not achieve
2m.
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A Theory for Computational Learning VC Dimension and Sample Complexity Bounds

Configurations of 3 Points in 2D

−

−

−

−

− −

− −

++

+

+ +

+

++−−

+

+

+

+ −−
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A Theory for Computational Learning VC Dimension and Sample Complexity Bounds

Halfspaces Shatter 3 Points in 2D

−+

+

+

+

− − + +

+

++

+

+ +

−−

−−

−

−

−

−

−

Question 1

Can we shatter 4 points ?
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A Theory for Computational Learning VC Dimension and Sample Complexity Bounds

Can Halfspaces Shatter 4 Points in 2D?

+

+

−

−

+

−
+

+
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A Theory for Computational Learning VC Dimension and Sample Complexity Bounds

Halfspaces can not Shatter 4 Points in 2D

−

?

+

+

−

+

+

+

−

Theorem 11 (Radon)

Any set of d + 2 points in Rd can be partitioned into two (disjoint) sets
whose convex hulls intersect.

Corollary 12

VC -dim (HALFSPACES) = 3 in 2 dimensions.

VC -dim (HALFSPACES) = d + 1 in d ≥ 1 dimensions.
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A Theory for Computational Learning VC Dimension and Sample Complexity Bounds

Sauer’s Lemma

Lemma 13 (Sauer’s Lemma)

Let d ≥ 0 and m ≥ 1 be given integers and let H be a hypothesis space
with VC -dim (H) = d . Then

ΠH(m) ≤ 1 +

(

m

1

)

+

(

m

2

)

+ · · ·+

(

m

d

)

= Φ(d ,m).

Proposition 1

For all m ≥ d ≥ 1, Φ(d ,m) <
(

em
d

)d
.
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A Theory for Computational Learning VC Dimension and Sample Complexity Bounds

VC Dimension: How Many Examples are Enough for

Learning (Distribution Independently)?

Theorem 14

Let C have finite VC -dim (C) = d ≥ 1 and moreover let 0 < δ, ε < 1.
Then,

m ≥

⌈

4

ε
·

(

d · lg

(

12

ε

)

+ lg

(

2

δ

))⌉

samples guarantee that any consistent hypothesis has small error with high
probability (in the PAC-learning sense).

We still need an efficient algorithm to efficiently PAC-learn the class.
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A Theory for Computational Learning VC Dimension and Sample Complexity Bounds

VC Dimension: How Many Examples are Necessary for

Learning (Distribution Independently)?

Theorem 15

Any algorithm for PAC-learning a concept class of VC dimension d with
parameters ε < 1/16 and δ ≤ 1/15, must use

m >
d − 1

64ε

training examples in the worst case.
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A Theory for Computational Learning VC Dimension and Sample Complexity Bounds

Proving the Lower Bound

Let X = {x1, . . . , xd} be shattered by C.

Construct a pathological distribution that forces any algorithm to take
many examples.

supp(D) = X ⇒ w.l.o.g. C = C(X ), so C is a finite class, |C| = 2d .

Choosing a c from C is equivalent to tossing a fair coin d times to
determine the labeling on X .

Suppose there is a learning algorithm A that uses at most m =
⌈

d−1
64ε

⌉

training examples producing a hypothesis h.

Want to show:
(∃D on X )(∃c ∈ C) [PrS∼Dm (RiskD (h, c) > ε) > 1/15].
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A Theory for Computational Learning VC Dimension and Sample Complexity Bounds

Proving the Lower Bound

Define D independently of A:
{

Pr (x1) = 1 − 16ε
Pr (x2) = Pr (x3) = . . . = Pr (xd) =

16ε
d−1

Let X ′ = {x2, x3, . . . , xd}.

Let Risk′D (h, c) = Prx∼D (h(x) 6= c(x) ∧ x ∈ X ′).

Note that

RiskD (h, c) = Prx∼D (h(x) 6= c(x))

≥ Prx∼D

(

h(x) 6= c(x) ∧ x ∈ X ′
)

= Risk′D (h, c) .

It is easier to prove PrS∼Dm

(

Risk′D (h, c) > ε
)

> 1/15.

But then the result follows from the above observation.
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A Theory for Computational Learning VC Dimension and Sample Complexity Bounds

Proving the Lower Bound

Probabilistic argument: Pick a random c ∈ C and show that c is hard to
learn for A with positive probability. This implies that there is at least one
c ∈ C that is hard to learn for A.
Idea: Argue that the sample S containing m iid examples from D, will
miss more than half of the points from X ′.

h will be ‘guessing’ the labels for these points ⇒ inevitable to have
large risk under D.

Expected # of instances from X ′ appearing in S :

µ =
[

16ε
d−1 · (d − 1)

]

·
(

d−1
64ε

)

= d−1
4 .

Markov ⇒ Pr
(

# of instances from X ’ in S ≥ d−1
2

)

≤
d−1

4
d−1

2

= 1/2.

Define the bad event

B ≡ S contains less than d−1
2 instances from X ′ .

By the above,

PrS∼Dm (B) = 1 − PrS∼D

(

# instances from X ’ in S ≥
d − 1

2

)

≥
1

2
. (1)
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A Theory for Computational Learning VC Dimension and Sample Complexity Bounds

Proving the Lower Bound

h is independent of X ′ \ S

we pick c ∈ C at random

So, h will make a mistake on each instance x ∈ X ′ \ S with probability 1/2.

Each instance x ∈ X ′ \ S contributes to Risk′D (h, c) an amount of
1
2 · 16ε

(d−1) .

When the bad event B occurs, we have |X ′ \ S | > d−1
2 .

This implies
Ec,S

[

Risk′D (h, c) | B
]

> 4ε . (2)

By (1) and (2) we get a lower bound on Ec,S

[

Risk′D (h, c)
]

:

Ec,S

[

Risk′D (h, c)
]

≥ Ec,S

[

Risk′D (h, c) | B
]

· PrS (B)>(4ε) · (1/2) = 2ε .

(We used E [Y ] =
∑

i E [Y | Ai ] · Pr (Ai ), where Ai : finite or countable partition of the

sample space.)
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A Theory for Computational Learning VC Dimension and Sample Complexity Bounds

Proving the Lower Bound

Ec,S

[

Risk′D (h, c)
]

> 2ε =⇒ (∃c⋆ ∈ C)
[

ES

[

Risk′D (h, c⋆)
]

> 2ε
]

.

Take that c⋆ as the target concept.

Show that A will be prone to produce an h with large risk.

Risk′D (h, c) = Prx∼D (h(x) 6= c(x) ∧ x ∈ X ′) ≤ Prx∼D (x ∈ X ′) = 16ε.
So,

ES

[

Risk′D (h, c) | Risk′D (h, c) > ε
]

≤ 16ε .

Therefore,

2ε < ES

[

Risk′D (h, c)
]

= PrS
(

Risk′D (h, c) > ε
)

· ES

[

Risk′D (h, c) | Risk′D (h, c) > ε
]

+(1 − PrS
(

Risk′D (h, c) > ε
)

) · ES

[

Risk′D (h, c) | Risk′D (h, c) ≤ ε
]

≤ PrS
(

Risk′D (h, c) > ε
)

· (16ε) + (1 − PrS
(

Risk′D (h, c) > ε
)

) · (ε)

= 15ε · PrS
(

Risk′D (h, c) > ε
)

+ ε .

In other words, PrS
(

Risk′D (h, c) > ε
)

> 1
15 .
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