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@ Why is Adversarial Machine Learning Important?
© Poisoning Attacks (Training-Time Attacks)

© Adversarial Examples (Test-Time Attacks)

O Summary
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What is Machine Learning?

@ Learning from historical data to make decisions about unseen data.

o Traditional Programming

Data —
Computer | —  Output
Program —

@ Machine Learning

Data —
Computer | —>  Program

Output —
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Machine Learning: A Success Story

Machine learning (ML) has changed our lives.
Health

@ Finance/Economy

@ Computer vision: autonomous driving
@ Computer security: threat prediction
°

many more applications ...
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Why is Adversarial Machine Learning Important?

Machine Learning in the Presence of Adversaries

@ Machine learning was not designed to deal with adversaries.
& 'Naive’ requirement for success: make few mistakes on average.
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Why is Adversarial Machine Learning Important?

Machine Learning in the Presence of Adversaries

@ Machine learning was not designed to deal with adversaries.
& 'Naive’ requirement for success: make few mistakes on average.

What is the performance of ML systems
in the presence of (malicious) adversaries ¥

@ Subverting spam filter by poisoning training data [Nelson et. al. 2008]

@ Evading PDF malware detectors [Xu et. al. 2016]

@ Fooling computer vision systems by adding small perturbations
[Szegedy et. al. 2014]

“panda” “gibbon"

57.7% confidence 99.3% confidence
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Why is Adversarial Machine Learning Important?

Classification

Training Testing
x; ~ D x~ D
di = (xi, ¢(x7)) d = (x, c(x))

d1 dm

] )
Tenre <B
v

{
O

Conf (L) = Pr(Riskp (h, c) < ¢) Riskp (h,c) = Prp (£ # ¢(x))
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Why is Adversarial Machine Learning Important?

Classification under Attack

Poisoning Attack

d,‘ = (X,'7 C(X,'))

X,'ND

di

L 4

L 4
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Adversarial Machine Learning

Evasion Attack

x~D
d = (x,¢(x))
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Why is Adversarial Machine Learning Important?

Terminology and Goal of Learning

Goal (Good Approximation with High Probability)

There is a function c over a space X. One wants to come up (in a
reasonable amount of time) with a function h such that h is a good
approximation of c with high probability.

Description 1 (Parameters and Terminology)

@ X: Instance Space (say, {0,1}")
Y: Labels (say, {+,—1})
c € C: Target concept belonging to a concept class

h € H: Hypothesis belonging to a hypothesis class

High Probability: Confidence 1 — ¢

Reasonable Amount of Time: Polynomial in n,1/=,1/s

°
°
o Good Approximation: Small Risk (Error) ¢
°
°
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Why is Adversarial Machine Learning Important?

Important Questions in Adversarial Machine Learning
@ Formalizing (complexity-theoretic) notions of security.

@ What are the inherent powers and limitations of adversaries against
ML systems?

@ Barriers for provable robustness of ML systems against adversarial
attacks, whether poisoning or evasion.

@ information-theoretic, with all-knowing adversaries
o computationally bounded adversaries

@ Can ML systems achieve Probably Approximately Correct (PAC)
generalization bounds under adversarial attacks?
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Why is Adversarial Machine Learning Important?

Important Questions in Adversarial Machine Learning

@ Formalizing (complexity-theoretic) notions of security.
[New definition and comparative study]

@ What are the inherent powers and limitations of adversaries against
ML systems?

[Concentration of measure]
@ Barriers for provable robustness of ML systems against adversarial
attacks, whether poisoning or evasion.

@ information-theoretic, with all-knowing adversaries
o computationally bounded adversaries

[Concentration of measure]

@ Can ML systems achieve Probably Approximately Correct (PAC)
generalization bounds under adversarial attacks?
[PAC learning under poisoning; positive & negative results]
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Poisoning Attacks (Training-Time Attacks)
Outline

© Poisoning Attacks (Training-Time Attacks)
@ PAC Learning, Noise and Adversaries
@ p-Tampering Attacks
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PAC Learning, Noise and Adversaries
Probably Approximately Correct (PAC) Learning

@ There is an arbitrary, unknown distribution D over X.

o Learn from poly (1, 1) many examples (x,c(x)), where x ~ D.

o Riskp (h,c) = Preop (h (x) # ¢ (x)).

X c
h +
Goal 1 ([Valiant, 1984])
Pr(Riskp (h,c) <e)>1-9§. J
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Poisoning Attacks (Training-Time Attacks) PAC Learning, Noise and Adversaries

PAC Learning under Noise

Learning

Algorithm

o Goal

Pr(Riskp (h,c) <e) >1-9¢

o poly (1, %) many examples
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Poisoning Attacks (Training-Time Attacks) PAC Learning, Noise and Adversaries

Malicious Noise Model [Valiant, 1985]

Learning

Algorithm

@ Adversary may use arbitrary (x;, y;)

e e.g., wrong label ((x;,yi) & Supp(D))
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Poisoning Attacks (Training-Time Attacks) PAC Learning, Noise and Adversaries

Poisoning Attacks

p-fraction 3

¢ ©

Learning

Algorithm

T &« &

Adversary knows the test example (targeted)
Adversary does not know the test example (non-targeted)

@ [Xiao, Biggio, Brown, Fumera, Eckert, Roli, 2015]
@ [Shen, Tople, Saxena, 2016]
°
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Poisoning Attacks (Training-Time Attacks) PAC Learning, Noise and Adversaries

Is PAC Learning Possible under Malicious Noise?

Learning

Algorithm

@ PAC learning not possible under malicious noise [Kearns & Li, 1993]

e Using wrong labels
o Using specific pathological distribution
(method of induced distributions)
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Poisoning Attacks (Training-Time Attacks) PAC Learning, Noise and Adversaries

Limiting the Power of the Adversary under Malicious Noise

Learning

Algorithm

@ What if the adversary can not give wrong labels?
@ What if we care about specific (natural) distributions?

@ Is PAC learning possible now?
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PR AL
p-Tampering Noise/Attack Model

@ Each training example

(xi,yi) ~D , with probability 1 — p
(xi, i) ~ V , with probability p

° ‘ knows the history of examples so far

° ‘ can only generate outputs from Supp(D)
¢ i.e., adversary always uses correct label y;

@ [Per Austrin, Kai-Min Chung, Mohammad Mahmoody, Rafael Pass &
Karn Seth, 2014]

@ [Mahloujifar & Mahmoody, 2017]
@ [Mahloujifar, Diochnos & Mahmoody, 2018|

@ Defensible malicious noise
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p-Tampering Attacks
Main Questions [Mahloujifar, D, Mahmoody, ALT 2018]

© Qualitative: Is PAC learning possible under p-tampering attacks?
(when it is possible under no attacks)

© Quantitative: How much can a p-tampering attack increase the risk?
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p-Tampering Attacks
Main Questions [Mahloujifar, D, Mahmoody, ALT 2018]

© Qualitative: Is PAC learning possible under p-tampering attacks?
(when it is possible under no attacks)
Answer:

YES

© Quantitative: How much can a p-tampering attack increase the risk?
Answer: For ‘bounded’ loss functions, non-targeted case,

Riskp (h)  — Riskp (h) + p - Var[Riskp (h)]
Pr(Riskp (h) >e) =80 — Pr(Riskp(h) >¢€) >+ pd(1 — )

D. Diochnos (OU - CS) Adversarial Machine Learning Oct 18, 2020 21 /50



CIEL LG
Positive Result: Feasibility of PAC Learning

@ Is PAC learning possible under p-tampering attacks?
(when it is possible under no attacks)

Yes
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CIEL LG
Positive Result: Feasibility of PAC Learning
Theorem 1 (Informal)

PAC learning a concept class C under no noise

—

PAC learning C under p-tampering attacks
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CIEL LG
Positive Result: Feasibility of PAC Learning

Theorem 1 (Informal)

PAC learning a concept class C under no noise

—

PAC learning C under p-tampering attacks
Proof Sketch

o With probability p the adversary can change each training example.
@ About (1 — p) fraction of the data is generated honestly.
@ Require m' ~ f’"p examples in this adversarial setting.

(m examples enough for PAC learning without noise)
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CIEL LG
Positive Result: Feasibility of PAC Learning

Theorem 1 (Informal)

PAC learning a concept class C under no noise

—

PAC learning C under p-tampering attacks
Proof Sketch

o With probability p the adversary can change each training example.
@ About (1 — p) fraction of the data is generated honestly.
@ Require m' ~ f’"p examples in this adversarial setting.

(m examples enough for PAC learning without noise)

Remark 1

The locations of the examples that are replaced are outside of the
adversary's control.
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p-Tampering Attacks
Positive Result: Feasibility of PAC Learning

Theorem 1 (Informal)

PAC learning a concept class C under no noise

—

PAC learning C under p-tampering attacks

@ Theorem no longer holds if the
adversary can choose the
location

@ e.g., learner never sees
examples from the shaded
region.
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Poisoning Attacks (Training-Time Attacks) p-Tampering Attacks

Random vs Adversarial Locations

@ p-Tampering vs Bounded Budget

p-Tampering: The adversary can not choose which examples to alter.

(xi,yi) ~D , with probability 1 — p
(i, yi) ~ ’ , with probability p

Bounded Budget: The adversary can choose which p-fraction of the
training examples to alter.
@ Query learning; [Angluin, Krikis, Sloan, Turan, 1997]
@ Strong adaptive corruption; [Goldwasser, Kalai, Park, 2015]

@ The previous theorem does not extend to the bounded budget case.
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p-Tampering Attacks
Main Questions [Mahloujifar, D, Mahmoody, ALT 2018]

© Qualitative: Is PAC learning possible under p-tampering attacks?
(when it is possible under no attacks)

Answer:
YES V4

@ Quantitative: How much can a p-tampering attack increase the risk?
Answer: For ‘bounded’ loss functions, non-targeted case,

Riskp (h) —  Riskp (h) + p - Var[Riskp (h)]
Pr(Riskp (h) >e)=d — Pr(Riskp(h) >¢) >+ po(1—9)
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p-Tampering Attacks
|dea for Answering the Second Question in One Slide

@ Attack designed to generate a specific joint distribution
PI" (d]_, ey dm) = Prpm (dl, ce dm) (1 + p(f(dl, e dm) — Epm [f])) .

@ Expected value under new distribution is,
E‘ [f] > E[f] + p - Var|f]
@ Generalized Santha-Vazirani source [Santha & Vazirani, 1986],

[Beigi, Etesami, Gohari, 2017]

@ generated by an efficient p-tampering attack
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Poisoning Attacks (Training-Time Attacks) [-SEETILERNIEISE

Forming a Better Picture on Poisoning Attacks

@ These were polynomial-time attacks and defenses.

@ What are the ultimate powers of adversaries on poisoning attacks —
without even taking computational complexity into account?
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Poisoning Attacks (Training-Time Attacks) [-SEETILERNIEISE

Forming a Better Picture on Poisoning Attacks

@ These were polynomial-time attacks and defenses.

@ What are the ultimate powers of adversaries on poisoning attacks —
without even taking computational complexity into account?
& Connection with the phenomenon of concentration of measure.
& We will see attacks that are stronger (smaller perturbations)
@ We will see attacks that are weaker (information-theoretic)
@ First we need to detour to adversarial examples, use notions from
results there, and eventually connect such results to poisoning attacks
as well.
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Adversarial Examples (Test-Time Attacks)
Outline

© Adversarial Examples (Test-Time Attacks)
@ Which Definition Should we Use?
@ One Reason for Adversarial Examples
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ACWEEET NSNS LICCN @ E 2 fTG CWANEI S I Which Definition Should we Use?

Adversarial Examples

“panda” “gibbon"
57.7% confidence 99.3% confidence
@ prediction change [Moosavi-Dezfooli et al., 2016], [Goodfellow et al.,

2018], ...
@ corrupted instance [Madry et al., 2018], [Wong & Kolter, 2018], ...
(earlier in different context; [Mansour et al., 2015], [Feige et al., 2015], ...)
@ error region [Diochnos et al., 2018]
(around the same time [Gilmer et al., 2018], [Bubeck et al., 2018], and more
people are following; e.g., [Degwekar & Vaikuntanatan, 2019])
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ACWEEET NSNS LICCN @ E 2 fTG CWANEI S I Which Definition Should we Use?

Adversarial Examples

“panda” “gibbon"
57.7% confidence 99.3% confidence
@ prediction change [Moosavi-Dezfooli et al., 2016], [Goodfellow et al.,

2018], ...
@ corrupted instance [Madry et al., 2018], [Wong & Kolter, 2018], ...
(earlier in different context; [Mansour et al., 2015], [Feige et al., 2015], ...)
@ error region [Diochnos et al., 2018]
(around the same time [Gilmer et al., 2018], [Bubeck et al., 2018], and more
people are following; e.g., [Degwekar & Vaikuntanatan, 2019])
@ Definitions coincide in the case of images.
@ Definitions diverge in other natural cases. [Diochnos et al., 2018]
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Which Definition Should we Use?
Related Work on Certified Robustness

@ Cross-Lipschitz regularization [Hein & Andriushchenko, 2017]

@ Earth-mover’s distance between distributions [Sinha et al., 2018]

@ Semidefinite relaxation [Raghunathan et al., 2018]

@ Convex / linear programming relaxation [Wong & Kolter, 2018],
[Wong et al., 2018]

@ Connections to robust optimization [Ben Tal et al., 2009]

@ Ultimately want provable guarantees, better results and understanding.

¢ Understand robustness beyond image classification.

o Hard to interpret results of corrupted instances in some natural
contexts (e.g., uniform distribution over {0,1}")

@ Guarantee misclassification (adversarial examples) with error-region
definition.
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UL P e e
Understanding the Different Definitions

Prediction Change

Error Region

>
X

X\
=

c(x')

@ All three definitions coincide for images

@ truth proximity assumption (corrupted instance, prediction change)
o initial correctness assumption (prediction change)

@ Only error-region guarantees misclassification!
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Which Definition Should we Use?
Formalizing Adversarial Risk and Adversarial Robustness
e Ball,(x) ={x" € X | d(x,x) <r} (e.g., d is HD over {0,1}")
Definition 2 (Error-Region Adversarial Risk)
RiskER(h, ¢) = Pryp[3x’ € Ball,(x), h(x') # c(x')].

Definition 3 (Error-Region Adversarial Robustness)

Rob®}(h, ¢) = Exep [inf{r: Ix’ € Ball,(x), h(x') # c(x')}].

>

Prediction Change

Error Region

h(x') c(x)
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ACWEEET NSNS LICCN @ E 2 fTG CWANEI S I Which Definition Should we Use?

Main Questions [D, Mahloujifar, Mahmoody, NeurlPS 2018]
and [Mahloujifar, D, Mahmoody, AAAI 2019]

© Does it matter which definition we use for adversarial examples?
(if we want to guarantee misclassification)

© Are there inherent reasons enabling evasion attacks?
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Which Definition Should we Use?
Main Questions [D, Mahloujifar, Mahmoody, NeurlPS 2018]
and [Mahloujifar, D, Mahmoody, AAAI 2019]

@ Does it matter which definition we use for adversarial examples?
(if we want to guarantee misclassification)
Answer:
YES
(PC/CI may imply incorrect certified robustness compared to ER)

© Are there inherent reasons enabling evasion attacks?
Answer:

Concentration of measure
(actually the analysis also applies to poisoning attacks)
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QUL B e Gt o33 Uf
Incorrect Definitions May Lead to Catastrophe

Couplas in Finance

@ Formula to compute risk in correlated assets, by David X. Li (2000)

@ Story: Recipe for disaster: the formula that killed Wall Street, in the
Wired magazine. (https://www.wired.com/2009/02/wp-quant/)

o Talk: On Models & Theory, by Elchanan Mossel (v=mg2kldwByn8)

“... many practitioners use mathematics or methods that they do not
understand and this often leads to disastrous results and | think the
collapse in Wall Street is one of them!”

— Elchanan Mossel, 2016

@ We will study monotone conjunctions under the uniform distribution
to prove large discrepancies on the robustness predicted by the error
region definition and the other two definitions.
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REEE T o
Why Monotone Conjunctions? Why Uniform Distribution?

@ What are these functions?

o Logical AND of a subset of the variables {xi,...,x,}.
@ Say n > 5. Then, for example, c = xo A x4 A x5.

@ One of the most basic ways of selecting (combining) features
(constraints) in a prediction mechanism.

@ Building block for other classes of functions that are less understood;
e.g., monotone DNF formulae.

@ Typical benchmark (together with halfspaces and general
conjunctions) for studying various concepts in learning theory as it
usually provides interesting, but non-trivial insights, of the definitions,
the bounds that we should expect to get, etc.

@ Uniform distribution U, is perhaps the most natural distribution to
think of and the de-facto benchmark on any problem that we want to
understand better.
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UL P e e
Finding All Common Properties of a Set of Objects

Let X = {0,1}8 and c = 5o A x4 A x5.
@ Request m examples and look at the positive ones.

@ Delete the variables that are falsified by the positive examples.

A Study of Thinking [Bruner, Goodnow, Austin, 1956]
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QUL B e Gt o33 Uf
Finding All Common Properties of a Set of Objects

Let X = {0,1}8 and c = 5o A x4 A x5.
@ Request m examples and look at the positive ones.

@ Delete the variables that are falsified by the positive examples.

A Study of Thinking [Bruner, Goodnow, Austin, 1956]

example hypothesis h
x1 AXo AX3 A Xxga N\ X5 N\ Xe N\ X7\ X8
((11011101), +) X1 Axo A xg N\ Xs A\ Xg N\ Xg
((01011111),+) X2 A x4 N\ X5 A\ Xe N\ Xg
((01011100), +) X2 N\ X4 N\ X5 NXg
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QUL B e Gt o33 Uf
Finding All Common Properties of a Set of Objects

Let X = {0,1}8 and c = 5o A x4 A x5.
@ Request m examples and look at the positive ones.

@ Delete the variables that are falsified by the positive examples.

A Study of Thinking [Bruner, Goodnow, Austin, 1956]

example hypothesis h
x1 AXo AX3 A Xxga N\ X5 N\ Xe N\ X7\ X8
((11011101), +) X1 Axo A xg N\ Xs A\ Xg N\ Xg
((01011111),+) X2 A x4 N\ X5 A\ Xe N\ Xg
((01011100), +) X2 N\ X4 N\ X5 NXg

@ Is such an algorithm good for PAC learning?

o YES, provided m is large enough.
@ Creates a consistent hypothesis:

@ Predicts correct label for each training example.
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PSR W SSETU T N @S S i CWANG SIS I Which Definition Should we Use?

Case Study: Monotone Conjunctions under U,

@ H = C = monotone conjunctions having at least one and at most n
Boolean variables.
@ |h| = number of variables in h (h =x1 A xs A xg = |h1| = 3)

C:/m\X,'/\/u\yk and h:/m\X,'/\/W\ZL). (1)
i=1 k=1 /=1

i=1

&€ (h,c) = {x € {0,1}" [ h(x) # c(x)} .

Pr [X cé& (h7 c)] — ol T o—lhl _ ol=m—u—w .

xUp
° V has oracle access to h = V efficiently reconstructs h.
o Forie{l,...,n} query x;, =(1,...,1,0,1,...,1)

(Xone = (1,...,1) is always +)
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Which Definition Should we Use?
Case Study: Monotone Conjunctions under U,
Theorem 4 (Error Region Robustness; [D, Mahloujifar, Mahmoody,
NeurlPS2018])

o If h=c, then Rob®™¥(h, ¢) = 0o
o Ifh# c, then & - min{|h|,|c|} < Rob™(h,c) <1+ min{|hl,|c|}.

Theorem 5 (Prediction Change Robustness; [D, Mahloujifar, Mahmoody,
NeurlPS2018])

RobPC(h) = |h|/2 + 27",

Theorem 6 (Corrupted Instance Robustness; [D, Mahloujifar, Mahmoody,
NeurlPS2018])

|h|/4 < Rob®!(h, ) < |h| + 1/2.

4
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PSR W SSETU T N @S S i CWANG SIS I Which Definition Should we Use?

Evading Monotone Conjunctions under U,

50 [T k%

192} !
1% e
(] :
= H
@ H
3 ! H
Qo ! |
e 20 1
TS S U S O S O OO S SOORE S SO ; [

10 4

pred|ct|on change —%—
[ corrupted instance —&— 7]
1 (el s Wl il Wl I By el s B SRS MR error reglpn hnl

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95100
target size |c|
e n=100, ¢ =0.01,6=0.06 = m= F In (I"HI)-‘ = 7,232 examples

@ For each |c| perform 500 runs,
@ estimate robustness using 10K examples each time.

D. Diochnos (OU - CS) Adversarial Machine Learning Oct 18, 2020 41 /50



Which Definition Should we Use?
Main Questions [D, Mahloujifar, Mahmoody, NeurlPS 2018]
and [Mahloujifar, D, Mahmoody, AAAI 2019]

@ Does it matter which definition we use for adversarial examples?
(if we want to guarantee misclassification)

Answer:
YES v
(PC/Cl may give wrong certified robustness compared to ER)

© Are there inherent reasons enabling evasion attacks?
Answer:

Concentration of measure
(actually the analysis also applies to poisoning attacks)
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SR 2 T
Why Concentration of Measure?

@ Because making small changes on any given instance (say w.r.t. HD
over {0,1}") allows us to generate clouds of neighboring points that
have cummulatively higher probability mass.

@ So, with such small changes we can cover quickly almost the entire
space (say 99%).
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LCVEEEREIN ST LIECH @ EC S G EWASEIO I One Reason for Adversarial Examples

Concentration of Measure

Definition 7 (J-expansion)
The d-expansion of S C X'is: S5 ={x € X | d(x,S) <4}

@ Prp(S) =1/2= Prp(Ss) — 1 exponentially quickly as §
= Pr(S5) = 1 for 6 < diamg(X).

X
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ACVEEEEI N SETEEN @ S AN ST E) Il One Reason for Adversarial Examples

Examples of Concentrated Spaces

Normal Lévy families

@ For any set S such that Pr(S) = 1/2 and ¢ ~ 1//n we have
Pr (S;) > 0.99.

Examples of Normal Lévy families
@ n-dimensional Gaussian with d = 4.
@ Product distribution over {0,1}"” with d = HD

D. Diochnos (OU - CS) Adversarial Machine Learning Oct 18, 2020 45 /50



LCVEEEREIN ST LIECH @ EC S G EWASEIO I One Reason for Adversarial Examples

Implication to Evasion Attacks

@ Error region: /° /h

o £={x€ X | h(x)# c(x)}. Class A

@ Adversarial risk:

@ Riskp s (h,c) = Prp (&5).
Class B

Theorem 8 (Adversarial Examples for Normal Lévy Families)
Let (D, d) be a Lévy family with dimension n and diameter 1. Let h be a

hypothesis such that Riskp (h, c) > 1/poly(n). Then, V with budget
d = O(Y/vn) can drive the Riskp 5 (h, c) ~ 1.
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Implication to Poisoning Attacks

@ Learner L uses a sample S ~ D™,
@ Let H C # be the set of bad hypotheses (e.g., large risk)

Confidence: Conf(L) = Prs.pm (L(S) € H\ 7—2)

Adversarial Confidence:

Confy(L) = Prspm ((¥S')(d(S,S') < b) | L(S') € H\ H)

Dm
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Poisoning Attacks from Concentration

Theorem 9

Let L be a learner and H a subset of H where for each h € H we have
Riskp (h, c) > 1/ poly(m). Then, L J with budget b= O (v/m) can

Pr(he 7:{,) ~ 1 (Conf,(L) =~ 0) while the poisoned data are all still
correctly labeled!
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@ Summary
@ Summary
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Summary

@ PAC learning is possible under poisoning attacks:

@ p-tampering with clean labels
o weak p-budget with clean labels

@ PAC learning is not possible under strong p-budget poisoning attacks.
@ p-tampering can increase the risk by an amount of p- Var[Riskp (h, ¢)].

@ Error-region guarantees misclassification of adversarial examples.
@ Other definitions may lead to incorrect bounds.

@ Concentration of measure implies that adversarial examples almost
always exist with an O (\/n) perturbation.

@ Substituting O (y/m) training examples allows an adversary to almost
always lead the learner towards a bad hypothesis.
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