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Why is Adversarial Machine Learning Important?

What is Machine Learning?

Learning from historical data to make decisions about unseen data.

Traditional Programming

Data −→
Computer −→ Output

Program −→

Machine Learning

Data −→
Computer −→ Program

Output −→
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Why is Adversarial Machine Learning Important?

Machine Learning: A Success Story

Machine learning (ML) has changed our lives.

Health

Finance/Economy

Computer vision: autonomous driving

Computer security: threat prediction

many more applications ...
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Why is Adversarial Machine Learning Important?

Machine Learning in the Presence of Adversaries

Machine learning was not designed to deal with adversaries.
‘Naive’ requirement for success: make few mistakes on average.
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Why is Adversarial Machine Learning Important?

Machine Learning in the Presence of Adversaries

Machine learning was not designed to deal with adversaries.
‘Naive’ requirement for success: make few mistakes on average.

What is the performance of ML systems

in the presence of (malicious) adversaries ?

Subverting spam filter by poisoning training data [Nelson et. al. 2008]
Evading PDF malware detectors [Xu et. al. 2016]
Fooling computer vision systems by adding small perturbations
[Szegedy et. al. 2014]
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Why is Adversarial Machine Learning Important?

Classification
Training

xi ∼ D

di = (xi , c(xi ))

d1 dm

Learning

Algorithm

h

Conf (L) = Pr (RiskD (h, c) < ε)

Testing

x ∼ D

d = (x , c(x))

x

h

ℓ

RiskD (h, c) = PrD (ℓ 6= c(x))
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Why is Adversarial Machine Learning Important?

Classification under Attack
Poisoning Attack

xi ∼ D

di = (xi , c(xi ))

d1 dm

Learning

Algorithm

h̃

Evasion Attack

x ∼ D

d = (x , c(x))

x x ′

x ′

h

ℓ̃
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Why is Adversarial Machine Learning Important?

Terminology and Goal of Learning

Goal (Good Approximation with High Probability)
There is a function c over a space X . One wants to come up (in a
reasonable amount of time) with a function h such that h is a good
approximation of c with high probability.

Description 1 (Parameters and Terminology)

X : Instance Space (say, {0, 1}n)
Y: Labels (say, {+,−})
c ∈ C: Target concept belonging to a concept class

h ∈ H: Hypothesis belonging to a hypothesis class

Good Approximation: Small Risk (Error) ε

High Probability: Confidence 1 − δ

Reasonable Amount of Time: Polynomial in n, 1/ε, 1/δ
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Why is Adversarial Machine Learning Important?

Important Questions in Adversarial Machine Learning

Formalizing (complexity-theoretic) notions of security.

What are the inherent powers and limitations of adversaries against
ML systems?

Barriers for provable robustness of ML systems against adversarial
attacks, whether poisoning or evasion.

information-theoretic, with all-knowing adversaries
computationally bounded adversaries

Can ML systems achieve Probably Approximately Correct (PAC)
generalization bounds under adversarial attacks?

D. Diochnos (OU - CS) Adversarial Machine Learning Oct 18, 2020 10 / 50



Why is Adversarial Machine Learning Important?

Important Questions in Adversarial Machine Learning

Formalizing (complexity-theoretic) notions of security.
[New definition and comparative study]

What are the inherent powers and limitations of adversaries against
ML systems?

[Concentration of measure]

Barriers for provable robustness of ML systems against adversarial
attacks, whether poisoning or evasion.

information-theoretic, with all-knowing adversaries
computationally bounded adversaries

[Concentration of measure]

Can ML systems achieve Probably Approximately Correct (PAC)
generalization bounds under adversarial attacks?

[PAC learning under poisoning; positive & negative results]
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Poisoning Attacks (Training-Time Attacks) PAC Learning, Noise and Adversaries

Probably Approximately Correct (PAC) Learning

There is an arbitrary, unknown distribution D over X .

Learn from poly
(

1
ε
, 1
δ

)
many examples (x , c(x)), where x ∼ D.

RiskD (h, c) = Prx∼D (h (x) 6= c (x)).

c

h +

−X

Goal 1 ([Valiant, 1984])

Pr (RiskD (h, c) ≤ ε) ≥ 1 − δ .
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Poisoning Attacks (Training-Time Attacks) PAC Learning, Noise and Adversaries

PAC Learning under Noise

Distribution

D

d1 dm. . .di = (xi , yi )

Noise

N

h
Learning

Algorithm

Goal

Pr (RiskD (h, c) ≤ε) ≥ 1 − δ

poly
(

1
ε
, 1
δ

)
many examples
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Poisoning Attacks (Training-Time Attacks) PAC Learning, Noise and Adversaries

Malicious Noise Model [Valiant, 1985]

Distribution

D

d1 dm. . .di = (xi , yi )
h

Learning

Algorithm
p

1 − p

Adversary may use arbitrary (xi , yi )

e.g., wrong label ((xi , yi ) 6∈ Supp(D))
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Poisoning Attacks (Training-Time Attacks) PAC Learning, Noise and Adversaries

Poisoning Attacks

d1

dm

h
Learning

Algorithmp-fraction

Adversary knows the test example (targeted)

Adversary does not know the test example (non-targeted)

[Xiao, Biggio, Brown, Fumera, Eckert, Roli, 2015]

[Shen, Tople, Saxena, 2016]

...
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Poisoning Attacks (Training-Time Attacks) PAC Learning, Noise and Adversaries

Is PAC Learning Possible under Malicious Noise?

Distribution

D

d1 dm. . .di = (xi , yi )
h

Learning

Algorithm
p

1 − p

PAC learning not possible under malicious noise [Kearns & Li, 1993]

Using wrong labels
Using specific pathological distribution
(method of induced distributions)
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Poisoning Attacks (Training-Time Attacks) PAC Learning, Noise and Adversaries

Limiting the Power of the Adversary under Malicious Noise

Distribution

D

d1 dm. . .di = (xi , yi )
h

Learning

Algorithm
p

1 − p

What if the adversary can not give wrong labels?

What if we care about specific (natural) distributions?

Is PAC learning possible now?
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Poisoning Attacks (Training-Time Attacks) p-Tampering Attacks

p-Tampering Noise/Attack Model

Each training example

{
(xi , yi ) ∼ D , with probability 1 − p

(xi , yi ) ∼ , with probability p

knows the history of examples so far

can only generate outputs from Supp(D)

i.e., adversary always uses correct label yi

[Per Austrin, Kai-Min Chung, Mohammad Mahmoody, Rafael Pass &
Karn Seth, 2014]

[Mahloujifar & Mahmoody, 2017]

[Mahloujifar, Diochnos & Mahmoody, 2018]

Defensible malicious noise
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Poisoning Attacks (Training-Time Attacks) p-Tampering Attacks

Main Questions [Mahloujifar, D, Mahmoody, ALT 2018]

1 Qualitative: Is PAC learning possible under p-tampering attacks?
(when it is possible under no attacks)

2 Quantitative: How much can a p-tampering attack increase the risk?

D. Diochnos (OU - CS) Adversarial Machine Learning Oct 18, 2020 20 / 50



Poisoning Attacks (Training-Time Attacks) p-Tampering Attacks

Main Questions [Mahloujifar, D, Mahmoody, ALT 2018]

1 Qualitative: Is PAC learning possible under p-tampering attacks?
(when it is possible under no attacks)
Answer:

YES

2 Quantitative: How much can a p-tampering attack increase the risk?
Answer: For ‘bounded’ loss functions, non-targeted case,

RiskD (h) −→ RiskD (h) + p · Var[RiskD (h)]

Pr (RiskD (h) ≥ ε) = δ −→ Pr (RiskD (h) ≥ ε) ≥ δ + pδ(1 − δ)
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Poisoning Attacks (Training-Time Attacks) p-Tampering Attacks

Positive Result: Feasibility of PAC Learning

Is PAC learning possible under p-tampering attacks?
(when it is possible under no attacks)

Yes
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Poisoning Attacks (Training-Time Attacks) p-Tampering Attacks

Positive Result: Feasibility of PAC Learning

Theorem 1 (Informal)

PAC learning a concept class C under no noise

=⇒

PAC learning C under p-tampering attacks
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Poisoning Attacks (Training-Time Attacks) p-Tampering Attacks

Positive Result: Feasibility of PAC Learning

Theorem 1 (Informal)

PAC learning a concept class C under no noise

=⇒

PAC learning C under p-tampering attacks

Proof Sketch

With probability p the adversary can change each training example.
About (1 − p) fraction of the data is generated honestly.
Require m′ ≈ m

1−p examples in this adversarial setting.
(m examples enough for PAC learning without noise)
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Poisoning Attacks (Training-Time Attacks) p-Tampering Attacks

Positive Result: Feasibility of PAC Learning

Theorem 1 (Informal)

PAC learning a concept class C under no noise

=⇒

PAC learning C under p-tampering attacks

Proof Sketch

With probability p the adversary can change each training example.
About (1 − p) fraction of the data is generated honestly.
Require m′ ≈ m

1−p examples in this adversarial setting.
(m examples enough for PAC learning without noise)

Remark 1

The locations of the examples that are replaced are outside of the
adversary’s control.
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Poisoning Attacks (Training-Time Attacks) p-Tampering Attacks

Positive Result: Feasibility of PAC Learning

Theorem 1 (Informal)

PAC learning a concept class C under no noise

=⇒

PAC learning C under p-tampering attacks

(X ,Y ) Theorem no longer holds if the
adversary can choose the
location

e.g., learner never sees
examples from the shaded
region.

D. Diochnos (OU - CS) Adversarial Machine Learning Oct 18, 2020 24 / 50



Poisoning Attacks (Training-Time Attacks) p-Tampering Attacks

Random vs Adversarial Locations

p-Tampering vs Bounded Budget

p-Tampering: The adversary can not choose which examples to alter.

{
(xi , yi ) ∼ D , with probability 1 − p

(xi , yi ) ∼ , with probability p

Bounded Budget: The adversary can choose which p-fraction of the
training examples to alter.

Query learning; [Angluin, Krik, is, Sloan, Turán, 1997]

Strong adaptive corruption; [Goldwasser, Kalai, Park, 2015]

The previous theorem does not extend to the bounded budget case.
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Poisoning Attacks (Training-Time Attacks) p-Tampering Attacks

Main Questions [Mahloujifar, D, Mahmoody, ALT 2018]

1 Qualitative: Is PAC learning possible under p-tampering attacks?
(when it is possible under no attacks)
Answer:

YES V

2 Quantitative: How much can a p-tampering attack increase the risk?
Answer: For ‘bounded’ loss functions, non-targeted case,

RiskD (h) −→ RiskD (h) + p · Var[RiskD (h)]

Pr (RiskD (h) ≥ ε) = δ −→ Pr (RiskD (h) ≥ ε) ≥ δ + pδ(1 − δ)
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Poisoning Attacks (Training-Time Attacks) p-Tampering Attacks

Idea for Answering the Second Question in One Slide

Attack designed to generate a specific joint distribution

Pr (d1, . . . , dm) = PrDm (d1, . . . , dm) (1 + p (f (d1, . . . , dm)− EDm [f ])) .

Expected value under new distribution is,

E [f ] ≥ E [f ] + p · Var[f ]

Generalized Santha-Vazirani source [Santha & Vazirani, 1986],
[Beigi, Etesami, Gohari, 2017]

generated by an efficient p-tampering attack
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Poisoning Attacks (Training-Time Attacks) p-Tampering Attacks

Forming a Better Picture on Poisoning Attacks

These were polynomial-time attacks and defenses.

What are the ultimate powers of adversaries on poisoning attacks –
without even taking computational complexity into account?
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Poisoning Attacks (Training-Time Attacks) p-Tampering Attacks

Forming a Better Picture on Poisoning Attacks

These were polynomial-time attacks and defenses.

What are the ultimate powers of adversaries on poisoning attacks –
without even taking computational complexity into account?

Connection with the phenomenon of concentration of measure.

We will see attacks that are stronger (smaller perturbations)
We will see attacks that are weaker (information-theoretic)

First we need to detour to adversarial examples, use notions from
results there, and eventually connect such results to poisoning attacks
as well.
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Adversarial Examples (Test-Time Attacks)
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Adversarial Examples (Test-Time Attacks) Which Definition Should we Use?

Adversarial Examples

prediction change [Moosavi-Dezfooli et al., 2016], [Goodfellow et al.,

2018], ...

corrupted instance [Madry et al., 2018], [Wong & Kolter, 2018], ...

(earlier in different context; [Mansour et al., 2015], [Feige et al., 2015], ...)

error region [Diochnos et al., 2018]

(around the same time [Gilmer et al., 2018], [Bubeck et al., 2018], and more

people are following; e.g., [Degwekar & Vaikuntanatan, 2019])
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Adversarial Examples (Test-Time Attacks) Which Definition Should we Use?

Adversarial Examples

prediction change [Moosavi-Dezfooli et al., 2016], [Goodfellow et al.,

2018], ...

corrupted instance [Madry et al., 2018], [Wong & Kolter, 2018], ...

(earlier in different context; [Mansour et al., 2015], [Feige et al., 2015], ...)

error region [Diochnos et al., 2018]

(around the same time [Gilmer et al., 2018], [Bubeck et al., 2018], and more

people are following; e.g., [Degwekar & Vaikuntanatan, 2019])

Definitions coincide in the case of images.
Definitions diverge in other natural cases. [Diochnos et al., 2018]
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Adversarial Examples (Test-Time Attacks) Which Definition Should we Use?

Related Work on Certified Robustness

Cross-Lipschitz regularization [Hein & Andriushchenko, 2017]

Earth-mover’s distance between distributions [Sinha et al., 2018]

Semidefinite relaxation [Raghunathan et al., 2018]

Convex / linear programming relaxation [Wong & Kolter, 2018],
[Wong et al., 2018]

Connections to robust optimization [Ben Tal et al., 2009]

Ultimately want provable guarantees, better results and understanding.

Understand robustness beyond image classification.
Hard to interpret results of corrupted instances in some natural
contexts (e.g., uniform distribution over {0, 1}n)
Guarantee misclassification (adversarial examples) with error-region
definition.
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Adversarial Examples (Test-Time Attacks) Which Definition Should we Use?

Understanding the Different Definitions

h(x)

h(x ′)

c(x)

c(x ′)
Error Region

Co
rr
up

te
d
In
st
an

ce

P
re

d
ic

ti
on

C
h
an

ge c

h +

−X

All three definitions coincide for images

truth proximity assumption (corrupted instance, prediction change)
initial correctness assumption (prediction change)

Only error-region guarantees misclassification!
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Adversarial Examples (Test-Time Attacks) Which Definition Should we Use?

Formalizing Adversarial Risk and Adversarial Robustness

Ballr (x) = {x ′ ∈ X | d(x , x ′) ≤ r} (e.g., d is HD over {0, 1}n)

Definition 2 (Error-Region Adversarial Risk)

RiskER

r (h, c) = Prx←D [∃x ′ ∈ Ballr (x), h(x ′) 6= c(x ′)].

Definition 3 (Error-Region Adversarial Robustness)

RobER(h, c) = Ex←D [inf{r : ∃x ′ ∈ Ballr (x), h(x ′) 6= c(x ′)}].

h(x)

h(x ′)

c(x)

c(x ′)
Error Region

Co
rr
up

te
d
In
st
an

ce

P
re

d
ic

ti
on

C
h
an

ge
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Adversarial Examples (Test-Time Attacks) Which Definition Should we Use?

Main Questions [D, Mahloujifar, Mahmoody, NeurIPS 2018]

and [Mahloujifar, D, Mahmoody, AAAI 2019]

1 Does it matter which definition we use for adversarial examples?
(if we want to guarantee misclassification)

2 Are there inherent reasons enabling evasion attacks?
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Adversarial Examples (Test-Time Attacks) Which Definition Should we Use?

Main Questions [D, Mahloujifar, Mahmoody, NeurIPS 2018]

and [Mahloujifar, D, Mahmoody, AAAI 2019]

1 Does it matter which definition we use for adversarial examples?
(if we want to guarantee misclassification)
Answer:

YES
(PC/CI may imply incorrect certified robustness compared to ER)

2 Are there inherent reasons enabling evasion attacks?
Answer:

Concentration of measure
(actually the analysis also applies to poisoning attacks)
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Adversarial Examples (Test-Time Attacks) Which Definition Should we Use?

Incorrect Definitions May Lead to Catastrophe

Couplas in Finance

Formula to compute risk in correlated assets, by David X. Li (2000)

Story: Recipe for disaster: the formula that killed Wall Street, in the
Wired magazine. (https://www.wired.com/2009/02/wp-quant/)

Talk: On Models & Theory, by Elchanan Mossel (v=mg2k1dwByn8)

“... many practitioners use mathematics or methods that they do not
understand and this often leads to disastrous results and I think the

collapse in Wall Street is one of them!”

— Elchanan Mossel, 2016

We will study monotone conjunctions under the uniform distribution
to prove large discrepancies on the robustness predicted by the error
region definition and the other two definitions.
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Adversarial Examples (Test-Time Attacks) Which Definition Should we Use?

Why Monotone Conjunctions? Why Uniform Distribution?

What are these functions?

Logical AND of a subset of the variables {x1, . . . , xn}.
Say n ≥ 5. Then, for example, c = x2 ∧ x4 ∧ x5.

One of the most basic ways of selecting (combining) features
(constraints) in a prediction mechanism.

Building block for other classes of functions that are less understood;
e.g., monotone DNF formulae.

Typical benchmark (together with halfspaces and general
conjunctions) for studying various concepts in learning theory as it
usually provides interesting, but non-trivial insights, of the definitions,
the bounds that we should expect to get, etc.

Uniform distribution Un is perhaps the most natural distribution to
think of and the de-facto benchmark on any problem that we want to
understand better.
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Adversarial Examples (Test-Time Attacks) Which Definition Should we Use?

Finding All Common Properties of a Set of Objects

Let X = {0, 1}8 and c = x2 ∧ x4 ∧ x5.

Request m examples and look at the positive ones.

Delete the variables that are falsified by the positive examples.

A Study of Thinking [Bruner, Goodnow, Austin, 1956]
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Adversarial Examples (Test-Time Attacks) Which Definition Should we Use?

Finding All Common Properties of a Set of Objects

Let X = {0, 1}8 and c = x2 ∧ x4 ∧ x5.

Request m examples and look at the positive ones.

Delete the variables that are falsified by the positive examples.

A Study of Thinking [Bruner, Goodnow, Austin, 1956]

example hypothesis h

x1 ∧ x2 ∧ x3 ∧ x4 ∧ x5 ∧ x6 ∧ x7 ∧ x8

((11011101),+) x1 ∧ x2 ∧ x4 ∧ x5 ∧ x6 ∧ x8

((01011111),+) x2 ∧ x4 ∧ x5 ∧ x6 ∧ x8

((01011100),+) x2 ∧ x4 ∧ x5 ∧x6
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Adversarial Examples (Test-Time Attacks) Which Definition Should we Use?

Finding All Common Properties of a Set of Objects

Let X = {0, 1}8 and c = x2 ∧ x4 ∧ x5.

Request m examples and look at the positive ones.

Delete the variables that are falsified by the positive examples.

A Study of Thinking [Bruner, Goodnow, Austin, 1956]

example hypothesis h

x1 ∧ x2 ∧ x3 ∧ x4 ∧ x5 ∧ x6 ∧ x7 ∧ x8

((11011101),+) x1 ∧ x2 ∧ x4 ∧ x5 ∧ x6 ∧ x8

((01011111),+) x2 ∧ x4 ∧ x5 ∧ x6 ∧ x8

((01011100),+) x2 ∧ x4 ∧ x5 ∧x6

Is such an algorithm good for PAC learning?

YES, provided m is large enough.
Creates a consistent hypothesis:

Predicts correct label for each training example.
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Adversarial Examples (Test-Time Attacks) Which Definition Should we Use?

Case Study: Monotone Conjunctions under Un

H = C = monotone conjunctions having at least one and at most n
Boolean variables.
|h| = number of variables in h (h1 = x1 ∧ x5 ∧ x8 ⇒ |h1| = 3)

c =
m∧

i=1

xi ∧
u∧

k=1

yk and h =
m∧

i=1

xi ∧
w∧

ℓ=1

zℓ . (1)

E (h, c) = {x ∈ {0, 1}n | h(x) 6= c(x)} .

Pr
x←Un

[x ∈ E (h, c)] = 2−|c| + 2−|h| − 21−m−u−w .

has oracle access to h =⇒ efficiently reconstructs h.
For i ∈ {1, . . . , n} query xi = 〈1, . . . , 1, 0, 1, . . . , 1〉
(xone = 〈1, . . . , 1〉 is always +)
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Adversarial Examples (Test-Time Attacks) Which Definition Should we Use?

Case Study: Monotone Conjunctions under Un

Theorem 4 (Error Region Robustness; [D, Mahloujifar, Mahmoody,
NeurIPS2018])

If h = c, then RobER(h, c) = ∞
If h 6= c, then 1

16 ·min{|h|, |c |} ≤ RobER(h, c) ≤ 1 +min{|h|, |c |}.

Theorem 5 (Prediction Change Robustness; [D, Mahloujifar, Mahmoody,
NeurIPS2018])

RobPC

r (h) = |h|/2 + 2−|h|.

Theorem 6 (Corrupted Instance Robustness; [D, Mahloujifar, Mahmoody,
NeurIPS2018])

|h|/4 < RobCI(h, c) < |h|+ 1/2.
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Adversarial Examples (Test-Time Attacks) Which Definition Should we Use?

Evading Monotone Conjunctions under Un
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n = 100, ε = 0.01, δ = 0.05 ⇒ m =
⌈

1
ε
· ln

(
|H|
δ

)⌉
= 7, 232 examples

For each |c | perform 500 runs,
estimate robustness using 10K examples each time.
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Adversarial Examples (Test-Time Attacks) Which Definition Should we Use?

Main Questions [D, Mahloujifar, Mahmoody, NeurIPS 2018]

and [Mahloujifar, D, Mahmoody, AAAI 2019]

1 Does it matter which definition we use for adversarial examples?
(if we want to guarantee misclassification)
Answer:

YES V
(PC/CI may give wrong certified robustness compared to ER)

2 Are there inherent reasons enabling evasion attacks?
Answer:

Concentration of measure
(actually the analysis also applies to poisoning attacks)
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Adversarial Examples (Test-Time Attacks) One Reason for Adversarial Examples

Why Concentration of Measure?

Because making small changes on any given instance (say w.r.t. HD
over {0, 1}n) allows us to generate clouds of neighboring points that
have cummulatively higher probability mass.

So, with such small changes we can cover quickly almost the entire
space (say 99%).
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Adversarial Examples (Test-Time Attacks) One Reason for Adversarial Examples

Concentration of Measure

Definition 7 (δ-expansion)

The δ-expansion of S ⊆ X is: Sδ = {x ∈ X | d(x , S) ≤ δ}

PrD (S) = 1/2 ⇒ PrD (Sδ) → 1 exponentially quickly as δ ր
⇒ Pr (Sδ) ≈ 1 for δ ≪ diamd(X ).

δ
S

Sδ

X
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Adversarial Examples (Test-Time Attacks) One Reason for Adversarial Examples

Examples of Concentrated Spaces

Normal Lévy families

For any set S such that Pr (S) = 1/2 and δ ≈ 1/
√
n we have

Pr (Sδ) ≥ 0.99.

Examples of Normal Lévy families

n-dimensional Gaussian with d = ℓ2.

Product distribution over {0, 1}n with d = HD
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Adversarial Examples (Test-Time Attacks) One Reason for Adversarial Examples

Implication to Evasion Attacks

Error region:

E = {x ∈ X | h(x) 6= c(x)}.

Adversarial risk:

RiskD,δ (h, c) = PrD (Eδ).

E

E

Class A

Class B

c h

δ

δEδ

Theorem 8 (Adversarial Examples for Normal Lévy Families)

Let (D, d) be a Lévy family with dimension n and diameter 1. Let h be a

hypothesis such that RiskD (h, c) ≥ 1/poly(n). Then, with budget
δ = Õ (1/

√
n) can drive the RiskD,δ (h, c) ≈ 1.
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Adversarial Examples (Test-Time Attacks) One Reason for Adversarial Examples

Implication to Poisoning Attacks

Learner L uses a sample S ∼ Dm.

Let H̃ ⊆ H be the set of bad hypotheses (e.g., large risk)

Confidence: Conf (L) = PrS∼Dm

(
L(S) ∈ H \ H̃

)

Adversarial Confidence:
Confb(L) = PrS∼Dm

(
(∀S ′)(d(S , S ′) ≤ b) | L(S ′) ∈ H \ H̃

)

Dm

Sb

S
b

H

H̃

L

L−1
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Adversarial Examples (Test-Time Attacks) One Reason for Adversarial Examples

Poisoning Attacks from Concentration

Theorem 9

Let L be a learner and H̃ a subset of H where for each h ∈ H̃ we have

RiskD (h, c) > 1/ poly(m). Then, with budget b = Õ
(√

m
)

can

Pr
(
h ∈ H̃

)
≈ 1 (Confb(L) ≈ 0) while the poisoned data are all still

correctly labeled!

D. Diochnos (OU - CS) Adversarial Machine Learning Oct 18, 2020 48 / 50



Summary

Outline

1 Why is Adversarial Machine Learning Important?

2 Poisoning Attacks (Training-Time Attacks)
PAC Learning, Noise and Adversaries
p-Tampering Attacks

3 Adversarial Examples (Test-Time Attacks)
Which Definition Should we Use?
One Reason for Adversarial Examples

4 Summary
Summary

D. Diochnos (OU - CS) Adversarial Machine Learning Oct 18, 2020 49 / 50



Summary Summary

Summary

PAC learning is possible under poisoning attacks:

p-tampering with clean labels
weak p-budget with clean labels

PAC learning is not possible under strong p-budget poisoning attacks.

p-tampering can increase the risk by an amount of p ·Var[RiskD (h, c)].

Error-region guarantees misclassification of adversarial examples.

Other definitions may lead to incorrect bounds.

Concentration of measure implies that adversarial examples almost
always exist with an O

(√
n
)

perturbation.

Substituting O
(√

m
)

training examples allows an adversary to almost
always lead the learner towards a bad hypothesis.
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