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Evolvability

Evolvability [Valiant, 2009] was based on Darwin’s work On the
Origin of Species by Means of Natural Selection [Darwin, 1859].



Evolvability

Key Points

◮ Species (Hypotheses), Generations (Iterations).

◮ A fitness function called performance.
◮ Estimated through sampling.

◮ Mutations define the Neighborhood.

◮ Tolerance t partitions the Neighborhood:
◮ Bene =

{
h
′ | PerfDn

(
h
′, c

)
> PerfDn

(h, c)+ t
}
.

◮ Neut =
{
h
′ | PerfDn

(
h
′, c

)
≥ PerfDn

(h, c)− t
}
\ Bene.

◮ Deleterious, the rest.

Goal

Pr (PerfDn (h, c) < PerfDn (c, c)− ε) < δ. (1)

Evolution should proceed from any starting point!
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Performance

◮ Xn = {0, 1}n.

◮ h(x), c(x) ∈ {+1,−1}.

PerfDn (h, c) =
∑

x∈Xn

h(x)c(x)Dn(x)

= 1− 2 · Pr (h(x) 6= c(x))

= E [h · c] .

◮ Estimated through sampling,

PerfDn (h, c, S) =
1

|S |

∑

x∈S

h(x) · c(x) .



Preliminary Remarks

Remark 1 (vs. PAC)

Evolvability is a restricted case of PAC learnability.

Goal 1 (Evolvability)

Pr (PerfDn (h, c) < PerfDn (c, c)− ε) < δ .

Goal 2 (PAC Learning)

Pr (errorDn (h, c) > ε) < δ .



Preliminary Remarks

Remark 2 (on the Updates)

Updates depend only on the positivity and negativity of the
examples or experiences, in the sense that there is no dependence
on the description of the examples (as is the case in the Statistical
Query model); e.g., # of 1’s in binary representation.

Remark 3 (vs. SQ model, Valiant, 2009)

Evolvable function classes ⊂ SQ learnable function classes.



Preliminary Remarks

Description 1 (The Tool on the SQ Model is a Query)

◮ Let ψ : {0, 1}n × {−1, 1} 7→ {−1, 1}.

◮ A query is a pair (ψ, τ).

◮ Estimate E [ψ(x , ℓ)] within tolerance τ .

Description 2 (Types of Queries)

◮ independent of the target (i.e. ψ depends only on x)

◮ correlational if ψ (x , ℓ) ≡ g(x)c(x).

Proposition 1

Any statistical query can be substituted by two statistical queries
that are independent of the target and two correlational queries.



A Simulation Result

Remark 4 (CSQ Learnability ⇒ Evolvability; Feldman 2008)

Let C be a concept class CSQ learnable over a class of distributions
D by a polynomial time algorithm A. Then, there exists an
evolutionary algorithm N(A) such that C is evolvable by N(A) over
D.



Related Results in Evolvability

Feldman ◮ CSQ → Evolvability algorithm [Feldman, 2008].
◮ Full conjunctions are evolvable [Feldman, 2009].
◮ Monotone conjunctions are not evolvable

distribution-independently using Boolean loss
[Feldman, 2011].

◮ Monotone conjunctions are evolvable
distribution-independently using quadratic loss
[Feldman, 2012].

D, Turán and D ◮ Swapping algorithm under Un [DT, 2009].
◮ Swapping algorithm under any Bn [D, 2016].
◮ (1+1) EA under some Bn [D, under submission].

Kanade, Valiant, Vaughan ◮ Evolvability with drifting targets

Kanade ◮ Recombination, parallel CSQ learning and
general conjunctions [Kanade, 2011].

More Results ◮ Michael [Michael, 2009], P Valiant [PValiant,
2012], Angelino and Kanade [AK, 2014].



Basic Notation

Representation

◮ Hypotheses are conjunctions of boolean variables; e.g.,
h1 = x1 ∧ x5 ∧ x8.

◮ Size / length: # vars in the conjunction; e.g., |h1| = 3.

◮ Represented as a set of indices; e.g., h1 = {1, 5, 8}.

◮ Also useful: represented by a bitstring; e.g., h1 = 10001001.

◮ Hamming distance d(h1, h2): # positions where the bitstrings
representing h1 and h2 differ.

Hypothesis Space

H = C≤q
n . Hypotheses such that 0 ≤ |h| ≤ q. (← non-realizable)

H = Cn = C≤q
n ∪ C>q

n . Hypotheses such that 0 ≤ |h| ≤ n.



Concept Class and Hypothesis Space

x1x2 . . . xn

∅

x1 x2 xn

x1x2 x1x3 xn−1xn

0
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q

n

Level

all conjunctions with
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Monotone Conjunctions under the Uniform Distribution are

Evolvable

properties
[Valiant, 2007] [D & Turán, 2009] [D, 2016]

H = Cn H = Cn H = C≤q
n

q O (lg(n/ε)) O (lg(1/ε)) O (lg(1/ε))

generations O (n lg(n/ε)) O (n lg(1/ε)) 2q

sample size Õ
(
(n/ε)6

)
Õ
(
n2/ε2 + n/ε4

)
Õ
(
n/ε4

)

Theorem 1 (D & Turán, 2009)

Set q = ⌈lg(3/ε)⌉ . For every target conjunction c and every initial
hypothesis h0 it holds that after O

(
q + |h0| ln

1
δ

)
iterations, each

iteration evaluating the performance of O (nq) hypotheses, and
each performance being evaluated using sample size

O
((

1
ε

)4 (
ln n + ln 1

δ + ln 1
ε

))
per iteration, the goal is achieved.



Correlation under the Uniform Distribution

h =

mutual︷ ︸︸ ︷∧

i∈M

xi ∧

redundant︷ ︸︸ ︷∧

ℓ∈R

xℓ

︸ ︷︷ ︸
bad

and c =
∧

i∈M

xi ∧

undiscovered︷ ︸︸ ︷∧

k∈U

xk

︸ ︷︷ ︸
good

(2)

PerfUn (h, c) = 1− 21−(m+u) − 21−(m+r) + 22−(m+r+u)

= 1− 21−|c| − 21−|h| + 22−|h|−u



Strategy

h =
∧

i∈M

xi ∧
∧

ℓ∈R

xℓ and c =
∧

i∈M

xi ∧
∧

k∈U

xk

◮ Short target ⇒ Find target precisely (w.h.p.)

◮ Long target ⇒ Find some good approximation (w.h.p.)
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Lemma 2 (Performance Lower Bound)

If |h| ≥ q and |c| ≥ q + 1 then PerfUn (h, c) > 1− 3 · 2−q.

Corollary 3

Let q ≥ lg(3/ε), |h| ≥ q, |c| ≥ q + 1 =⇒ PerfUn (h, c) > 1− ε.



Guiding the Search

goodgood bad good bad bad

(a) u ≥ 2 (b) u = 1 (c) u = 0

∆ = PerfUn

(
h′, c

)
− PerfUn (h, c)

Theorem 4 (Structure of Best Approximations)

The best q-approximation of a target c is

◮ c itself if |c| ≤ q

◮ any hypothesis formed by q good variables if |c| > q.



Example 1: Short Initial Hypothesis and Short Target

goodgood bad good bad bad

(a) u ≥ 2 (b) u = 1 (c) u = 0

Let X8 = {0, 1}8 such that {g1, g2, g3, b1, b2, b3, b4, b5}, the target
be c = g1 ∧ g2 ∧ g3, and require ε = 1/5. (q = 4)

Step i u Hypothesis hi Performance Neighborhood Class
0

≥ 2

∅ −3/4 N+

Bene

1 b1 0 N+ ∪ {swaps: b → g}
2 b1 ∧ b2 3/8 N+ ∪ {swaps: b → g}
3 b1 ∧ b2 ∧ b3 9/16 N+ ∪ {swaps: b → g}
4 b1 ∧ b2 ∧ b3 ∧ b4 21/32 {swaps: b → g}
5 b1 ∧ g3 ∧ b3 ∧ b4 22/32 {swaps: b → g}
6 1 g1 ∧ g3 ∧ b3 ∧ b4 24/32 {swaps: b → g}
7 0 g1 ∧ g3 ∧ g2 ∧ b4 28/32 {remove b}
8 0 g1 ∧ g3 ∧ g2 1 {h8} Neut



Example 2: Short Initial Hypothesis and Long Target

Let X13 = {0, 1}13 such that
{g1, g2, g3, g4, g5, g6, g7, b1, b2, b3, b4, b5, b6}, the target be
c = g1 ∧ g2 ∧ g3 ∧ g4 ∧ g5 ∧ g6 ∧ g7, and require ε = 1/5. (q = 4)

Step i u Hypothesis hi Performance Neighborhood Class
0

≥ 2

∅ −63/64 N+

Bene
1 b1 0 N+ ∪ {swaps: b → g}
2 b1 ∧ b2 63/128 N+ ∪ {swaps: b → g}
3 b1 ∧ b2 ∧ b3 189/256 N+ ∪ {swaps: b → g}
4

≥ 2

b1 ∧ b2 ∧ b3 ∧ b4 425/512 {all swaps} ∪ {h4}

Neut
5 b1 ∧ b6 ∧ b3 ∧ b4 425/512 {all swaps} ∪ {h5}
6 b1 ∧ b6 ∧ b3 ∧ b5 425/512 {all swaps} ∪ {h6}
7 b1 ∧ b6 ∧ b3 ∧ b5 425/512 {all swaps} ∪ {h7}
8

≥ 2
g1 ∧ b6 ∧ b3 ∧ b5 426/512 {swaps: b → g}

Bene9 g1 ∧ b6 ∧ b3 ∧ g4 428/512 {swaps: b → g}
10 g1 ∧ b6 ∧ g6 ∧ g4 432/512 {swaps: b → g}
11

≥ 2

g1 ∧ g3 ∧ g6 ∧ g4 440/512 {swaps: g → g} ∪ {h11}

Neut
12 g1 ∧ g3 ∧ g5 ∧ g4 440/512 {swaps: g → g} ∪ {h12}
13 g1 ∧ g3 ∧ g5 ∧ g4 440/512 {swaps: g → g} ∪ {h13}
14 g2 ∧ g3 ∧ g5 ∧ g4 440/512 {swaps: g → g} ∪ {h14}
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