Evolvability in Learning Theory

Dimitris Diochnos

School of Computer Science University of Oklahoma

Dec 2, 2020
Norman, OK

Evolvability

Evolvability [Valiant, 2009] was based on Darwin's work On the Origin of Species by Means of Natural Selection [Darwin, 1859].

Evolvability

Key Points

- Species (Hypotheses), Generations (Iterations).
- A fitness function called performance.
- Estimated through sampling.
- Mutations define the Neighborhood.
- Tolerance t partitions the Neighborhood:
- Bene $=\left\{\mathrm{h}^{\prime} \mid \operatorname{Perf}_{\mathcal{D}_{n}}\left(\mathrm{~h}^{\prime}, \mathrm{c}\right)>\operatorname{Perf}_{\mathcal{D}_{n}}(\mathrm{~h}, \mathrm{c})+t\right\}$.
- Neut $=\left\{h^{\prime} \mid \operatorname{Perf}_{\mathcal{D}_{n}}\left(h^{\prime}, c\right) \geq \operatorname{Perf}_{\mathcal{D}_{n}}(\mathrm{~h}, \mathrm{c})-t\right\} \backslash$ Bene.
- Deleterious, the rest.

Goal

$$
\begin{equation*}
\operatorname{Pr}\left(\operatorname{Perf}_{\mathcal{D}_{n}}(\mathrm{~h}, \mathrm{c})<\operatorname{Perf}_{\mathcal{D}_{n}}(\mathrm{c}, \mathrm{c})-\varepsilon\right)<\delta . \tag{1}
\end{equation*}
$$

Evolution should proceed from any starting point!

The Swapping Algorithm on Monotone Conjunctions

The Swapping Algorithm on Monotone Conjunctions

The Swapping Algorithm on Monotone Conjunctions

The Swapping Algorithm on Monotone Conjunctions

Performance

- $X_{n}=\{0,1\}^{n}$.
- $\mathrm{h}(x), \mathrm{c}(x) \in\{+1,-1\}$.

$$
\begin{aligned}
\operatorname{Perf}_{\mathcal{D}_{n}}(\mathrm{~h}, \mathrm{c}) & =\sum_{x \in X_{n}} \mathrm{~h}(x) \mathrm{c}(x) \mathcal{D}_{n}(x) \\
& =1-2 \cdot \operatorname{Pr}(\mathrm{~h}(x) \neq \mathrm{c}(x)) \\
& =\mathrm{E}[\mathrm{~h} \cdot \mathrm{c}]
\end{aligned}
$$

- Estimated through sampling,

$$
\operatorname{Perf}_{\mathcal{D}_{n}}(\mathrm{~h}, \mathrm{c}, S)=\frac{1}{|S|} \sum_{x \in S} \mathrm{~h}(x) \cdot \mathrm{c}(x)
$$

Preliminary Remarks

Remark 1 (vs. PAC)

Evolvability is a restricted case of PAC learnability.

Goal 1 (Evolvability)

$$
\operatorname{Pr}\left(\operatorname{Perf}_{\mathcal{D}_{n}}(h, c)<\operatorname{Perf}_{\mathcal{D}_{n}}(c, c)-\varepsilon\right)<\delta .
$$

Goal 2 (PAC Learning)

$$
\operatorname{Pr}\left(\operatorname{error}_{\mathcal{D}_{n}}(h, c)>\varepsilon\right)<\delta .
$$

Preliminary Remarks

Remark 2 (on the Updates)
Updates depend only on the positivity and negativity of the examples or experiences, in the sense that there is no dependence on the description of the examples (as is the case in the Statistical Query model); e.g., \# of 1's in binary representation.

Remark 3 (vs. SQ model, Valiant, 2009)
Evolvable function classes $\subset S Q$ learnable function classes.

Preliminary Remarks

Description 1 (The Tool on the $S Q$ Model is a Query)

- Let $\psi:\{0,1\}^{n} \times\{-1,1\} \mapsto\{-1,1\}$.
- A query is a pair (ψ, τ).
- Estimate $\mathrm{E}[\psi(x, \ell)]$ within tolerance τ.

Description 2 (Types of Queries)

- independent of the target (i.e. ψ depends only on x)
- correlational if $\psi(x, \ell) \equiv g(x) c(x)$.

Proposition 1

Any statistical query can be substituted by two statistical queries that are independent of the target and two correlational queries.

A Simulation Result

Remark 4 (CSQ Learnability \Rightarrow Evolvability; Feldman 2008)
Let \mathcal{C} be a concept class CSQ learnable over a class of distributions \mathcal{D} by a polynomial time algorithm \mathcal{A}. Then, there exists an evolutionary algorithm $N(\mathcal{A})$ such that \mathcal{C} is evolvable by $N(\mathcal{A})$ over D.

Related Results in Evolvability

Feldman CSQ \rightarrow Evolvability algorithm [Feldman, 2008].

- Full conjunctions are evolvable [Feldman, 2009].
- Monotone conjunctions are not evolvable distribution-independently using Boolean loss [Feldman, 2011].
- Monotone conjunctions are evolvable distribution-independently using quadratic loss [Feldman, 2012].
D , Turán and D Swapping algorithm under \mathcal{U}_{n} [DT, 2009].
- Swapping algorithm under any \mathcal{B}_{n} [D, 2016].
- $(1+1)$ EA under some \mathcal{B}_{n} [D, under submission].

Kanade, Valiant, Vaughan Evolvability with drifting targets
Kanade - Recombination, parallel CSQ learning and general conjunctions [Kanade, 2011].
More Results \quad Michael [Michael, 2009], P Valiant [PValiant, 2012], Angelino and Kanade [AK, 2014].

Basic Notation

Representation

- Hypotheses are conjunctions of boolean variables; e.g., $h_{1}=x_{1} \wedge x_{5} \wedge x_{8}$.
- Size / length: \# vars in the conjunction; e.g., $\left|h_{1}\right|=3$.
- Represented as a set of indices; e.g., $h_{1}=\{1,5,8\}$.
- Also useful: represented by a bitstring; e.g., $h_{1}=10001001$.
- Hamming distance $d\left(h_{1}, h_{2}\right)$: \# positions where the bitstrings representing h_{1} and h_{2} differ.

Hypothesis Space
$\mathcal{H}=\mathcal{C}_{\bar{n}}^{\leq q}$. Hypotheses such that $0 \leq|\mathrm{h}| \leq q . \quad(\leftarrow$ non-realizable)
$\mathcal{H}=\mathcal{C}_{n}=\mathcal{C}_{n}^{\leq q} \cup \mathcal{C}_{n}^{>q}$. Hypotheses such that $0 \leq|\mathrm{h}| \leq n$.

Concept Class and Hypothesis Space

Level

Monotone Conjunctions under the Uniform Distribution are

Evolvable

properties	[Valiant, 2007]	[D \& Turán, 2009]	[D, 2016]
	$\mathcal{H}=\mathcal{C}_{n}$	$\mathcal{H}=\mathcal{C}_{n}$	$\mathcal{H}=\mathcal{C} n$
q	$\mathcal{O}(\lg (n / \varepsilon))$	$\mathcal{O}(\lg (1 / \varepsilon))$	$\mathcal{O}(\lg (1 / \varepsilon))$
generations	$\mathcal{O}(n \lg (n / \varepsilon))$	$\mathcal{O}(n \lg (1 / \varepsilon))$	$2 q$
sample size	$\mathcal{\mathcal { O }}\left((n / \varepsilon)^{6}\right)$	$\mathcal{O}\left(n^{2} / \varepsilon^{2}+n / \varepsilon^{4}\right)$	$\mathcal{O}\left(n / \varepsilon^{4}\right)$

Theorem 1 (D \& Turán, 2009)
Set $q=\lceil\lg (3 / \varepsilon)\rceil$. For every target conjunction c and every initial hypothesis h_{0} it holds that after $\mathcal{O}\left(q+\left|h_{0}\right| \ln \frac{1}{\delta}\right)$ iterations, each iteration evaluating the performance of $\mathcal{O}(n q)$ hypotheses, and each performance being evaluated using sample size
$\mathcal{O}\left(\left(\frac{1}{\varepsilon}\right)^{4}\left(\ln n+\ln \frac{1}{\delta}+\ln \frac{1}{\varepsilon}\right)\right)$ per iteration, the goal is achieved.

Correlation under the Uniform Distribution

$$
\begin{aligned}
\operatorname{Perff}_{\mathcal{U}_{n}}(\mathrm{~h}, \mathrm{c}) & =1-2^{1-(m+u)}-2^{1-(m+r)}+2^{2-(m+r+u)} \\
& =1-2^{1-|c|}-2^{1-|h|}+2^{2-|h|-u}
\end{aligned}
$$

Strategy

$$
\mathrm{h}=\bigwedge_{i \in \mathfrak{M}} x_{i} \wedge \bigwedge_{\ell \in \mathfrak{R}} x_{\ell} \quad \text { and } \quad \mathrm{c}=\bigwedge_{i \in \mathfrak{M}} x_{i} \wedge \bigwedge_{k \in \mathfrak{U}} x_{k}
$$

- Short target \Rightarrow Find target precisely (w.h.p.)
- Long target \Rightarrow Find some good approximation (w.h.p.)

Strategy

$$
\mathrm{h}=\bigwedge_{i \in \mathfrak{M}} x_{i} \wedge \bigwedge_{\ell \in \mathfrak{R}} x_{\ell} \quad \text { and } \quad c=\bigwedge_{i \in \mathfrak{M}} x_{i} \wedge \bigwedge_{k \in \mathfrak{U}} x_{k}
$$

- Short target \Rightarrow Find target precisely (w.h.p.)
- Long target \Rightarrow Find some good approximation (w.h.p.)

Lemma 2 (Performance Lower Bound)
If $|h| \geq q$ and $|c| \geq q+1$ then $\operatorname{Perf}_{\mathcal{U}_{n}}(h, c)>1-3 \cdot 2^{-q}$.
Corollary 3
Let $q \geq \lg (3 / \varepsilon),|h| \geq q,|c| \geq q+1 \Longrightarrow \operatorname{Perf}_{\mathcal{U}_{n}}(h, c)>1-\varepsilon$.

Guiding the Search

$$
\Delta=\operatorname{Perf}_{\mathcal{U}_{n}}\left(\mathrm{~h}^{\prime}, \mathrm{c}\right)-\operatorname{Perf}_{\mathcal{U}_{n}}(\mathrm{~h}, \mathrm{c})
$$

Theorem 4 (Structure of Best Approximations)
The best q-approximation of a target c is

- c itself if $|c| \leq q$
- any hypothesis formed by q good variables if $|c|>q$.

Example 1: Short Initial Hypothesis and Short Target

(a) $u \geq 2$

(b) $u=1$

(c) $u=0$

Let $X_{8}=\{0,1\}^{8}$ such that $\left\{g_{1}, g_{2}, g_{3}, b_{1}, b_{2}, b_{3}, b_{4}, b_{5}\right\}$, the target be $c=g_{1} \wedge g_{2} \wedge g_{3}$, and require $\varepsilon=1 / 5$.
$(q=4)$

Step i	u	Hypothesis h_{i}	Performance	Neighborhood	Class
0		\emptyset	$-3 / 4$	N^{+}	
1		b_{1}	0	$N^{+} \cup\{$ swaps: $b \rightarrow g\}$	
2		$b_{1} \wedge b_{2}$	$3 / 8$	$N^{+} \cup\{$ swaps: $b \rightarrow g\}$	
3	≥ 2	$b_{1} \wedge b_{2} \wedge b_{3}$	$9 / 16$	$N^{+} \cup\{$ swaps: $b \rightarrow g\}$	Bene
4		$b_{1} \wedge b_{2} \wedge b_{3} \wedge b_{4}$	$21 / 32$	$\{$ swaps: $b \rightarrow g\}$	
5		$b_{1} \wedge g_{3} \wedge b_{3} \wedge b_{4}$	$22 / 32$	$\{$ swaps: $b \rightarrow g\}$	
6	1	$g_{1} \wedge g_{3} \wedge b_{3} \wedge b_{4}$	$24 / 32$	$\{$ swaps: $b \rightarrow g\}$	
7	0	$g_{1} \wedge g_{3} \wedge g_{2} \wedge b_{4}$	$28 / 32$	$\{$ remove $b\}$	
8	0	$g_{1} \wedge g_{3} \wedge g_{2}$	1	Neut	
				Nh $\}$	Neut

Example 2: Short Initial Hypothesis and Long Target

Let $X_{13}=\{0,1\}^{13}$ such that
$\left\{g_{1}, g_{2}, g_{3}, g_{4}, g_{5}, g_{6}, g_{7}, b_{1}, b_{2}, b_{3}, b_{4}, b_{5}, b_{6}\right\}$, the target be $c=g_{1} \wedge g_{2} \wedge g_{3} \wedge g_{4} \wedge g_{5} \wedge g_{6} \wedge g_{7}$, and require $\varepsilon=1 / 5 . \quad(q=4)$

Step i	u	Hypothesis h_{i}	Performance	Neighborhood	Class
0		\emptyset	-63/64	N^{+}	
1	≥ 2	b_{1}	0	$N^{+} \cup\{$ swaps: $b \rightarrow g\}$	Bene
2	≥ 2	$b_{1} \wedge b_{2}$	63/128	$N^{+} \cup\{$ swaps: $b \rightarrow g\}$	Bene
3		$b_{1} \wedge b_{2} \wedge b_{3}$	189/256	$N^{+} \cup\{$ swaps: $b \rightarrow g$ \}	
4		$b_{1} \wedge b_{2} \wedge b_{3} \wedge b_{4}$	425/512	$\{$ all swaps $\} \cup\left\{\mathrm{h}_{4}\right\}$	
5	≥ 2	$b_{1} \wedge b_{6} \wedge b_{3} \wedge b_{4}$	425/512	$\{$ all swaps $\} \cup\left\{\mathrm{h}_{5}\right\}$	Neut
6	≥ 2	$b_{1} \wedge b_{6} \wedge b_{3} \wedge b_{5}$	425/512	$\{$ all swaps $\} \cup\left\{h_{6}\right\}$	Neut
7		$b_{1} \wedge b_{6} \wedge b_{3} \wedge b_{5}$	425/512	$\{$ all swaps $\} \cup\left\{\mathrm{h}_{7}\right\}$	
8		$g_{1} \wedge b_{6} \wedge b_{3} \wedge b_{5}$	426/512	$\{$ swaps: $b \rightarrow g$ \}	
9	≥ 2	$g_{1} \wedge b_{6} \wedge b_{3} \wedge g_{4}$	428/512	$\{$ swaps: $b \rightarrow g$ \}	Bene
10		$g_{1} \wedge b_{6} \wedge g_{6} \wedge g_{4}$	432/512	$\{$ swaps: $b \rightarrow g$ \}	
11		$g_{1} \wedge g_{3} \wedge g_{6} \wedge g_{4}$	440/512	$\{$ swaps: $g \rightarrow g\} \cup\left\{h_{11}\right\}$	
12	≥ 2	$g_{1} \wedge g_{3} \wedge g_{5} \wedge g_{4}$	440/512	$\{$ swaps: $g \rightarrow g\} \cup\left\{h_{12}\right\}$	Neut
13	≥ 2	$g_{1} \wedge g_{3} \wedge g_{5} \wedge g_{4}$	440/512	$\{$ swaps: $g \rightarrow g\} \cup\left\{h_{13}\right\}$	Neut
14		$g_{2} \wedge g_{3} \wedge g_{5} \wedge g_{4}$	440/512	$\{$ swaps: $g \rightarrow g\} \cup\left\{\mathrm{h}_{14}\right\}$	

