
Basic Tools and Techniques for Algorithms in Learning�eory

Dimitris Diochnos

Created: Spring 2016
Revised: Fall 2017, Fall 2020

Abstract

�ese notes were created for CS 4710 - Artificial Intelligence at the University of Virginia

during the Spring of 2016. �e primary scope of the notes is the exposition of Markov’s inequal-

ity and Chebyshev’s inequality, as these are common tools used in learning theory and more

broadly in the analysis of randomized algorithms.

Revision (Fall 2017). �e document was revised during the Fall of 2017 as I realized the exis-

tence of a particular line of work. See Section 4 for details; this section was added in the Fall of

2017.

Revision (Fall 2020). �e document was revised during the Fall of 2020 when I was teaching

CS 5970 – Computational Learning�eory at the University of Oklahoma. I am now simplifying

the presentation in the historical remarks section as there is no reason to refer to connections

to a homework assignment that was used in the Artificial Intelligence class that was taught at

UVA.

1 Background from Probability �eory

Definition 1 (Sample Space). �e sample space of an experiment (or random trial) is the set of all

possible outcomes (or results) of that experiment.

Definition 2 (Random Variable). A random variable over a sample spaceΩ is a function that maps

every sample point (that is, outcome) to a real number.

Definition 3 (Independent Random Variables). Let Ω be a sample space. Two random variables X

and Y are independent, if for all x, y ∈ Ω,

Pr (X = x∧ Y = y) = Pr (X = x) · Pr (Y = y) .

An alternate definition is the following.

Definition 4 (Independent Random Variables). Let Ω be a sample space. Two random variables X

and Y are independent, if for all x, y ∈ Ω, such that Pr (Y = y) 6= 0, we have

Pr (X = x|Y = y) = Pr (X = x) · Pr (Y = y) .

Proposition 1 (Expectation of Independent Random Variables). Let X and Y be two independent

random variables. �en,

E [XY] = E [X] · E [Y] .
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Remark 1. Note that Proposition 1 is really a property of the expectation operator for independent

random variables. In general, Proposition 1 is not true. Actually, it is covariance (see Lemma 7) that

measures by how much Proposition 1 fails.

Proposition 2 (Union Bound). Let Y1, Y2, . . . , YT be T events in a probability space. �en,

Pr





T
⋃

j=1

Yj



 6

T∑

j=1

Pr
(

Yj
)

.

�e inequality is equality for disjoint events Yj.

1.1 Markov’s Inequality

�eorem 3 (Markov’s Inequality). Any non-negative random variable X satisfies

Pr (X > α) 6
E [X]

α
, ∀α > 0 .

Proof. For any event E, let IE be the indicator random variable of E; that is,

IE =

{
1 , if E occurs,

0 , otherwise

Let X be a non-negative random variable. We look at the event E = (X > α). In other words

I(X>α) = 1, if X > α and I(X>α) = 0, if X < α. But for α > 0, it holds

αI(X>α) 6 X .

We now take the expectation of the last inequality and we have

E
[

αI(X>α)

]

6 E [X] .

However, E
[

αI(X>α)

]

= αE
[

I(X>α)

]

= α · (1 · Pr (X > α) + 0 · Pr (X < α)) = α · Pr (X > α).

�

1.2 Variance and Chebyshev’s Inequality

Definition 5 (Variance). Let X be a random variable with expectation µ = E [X]. �e variance

σ2
X = Var [X] of X is defined to be

σ2
X = Var [X] = E

[

(X− µ)2
]

.

Remark 2 (Intuition on Variance). Variance measures how far a set of observations are spread out.

Proposition 4 (Variance). For a random variable X with expectation µ = E [X], we have

Var [X] = E
[

X2
]

− E [X]2 .
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Proof. From Definition 5 we have

Var [X] = E
[

(X− µ)2
]

= E
[

X2 − 2µX+ µ2
]

= E
[

X2
]

− E [2µX] + E
[

µ2
]

= E
[

X2
]

− 2µE [X] + µ2

= E
[

X2
]

− µ2
�

�eorem 5 (Chebyshev’s Inequality). Let X be a random variable with expected value µ and variance

σ2. �en,

Pr (|X− µ| > α) 6
σ2

α2
, ∀α > 0 .

Proof. Define the random variable Y = (X− µ)2.

Note that E [Y] = E
[

(X− µ)2
]

= Var [X].

�en, for α > 0, the way we have defined Y, the event (Y > α2) is the same as the event

(X− µ)2 > α2 ⇔ |X− µ| > α. �us, Pr
(

Y > α2
)

= Pr (|X− µ| > α).

Clearly, again by the definition of Y, Y is non-negative. So, by Markov’s inequality (�eorem 3),

Pr
(

Y > α2
)

6
E [Y]

α2
=

Var [X]

α2
. �

Remark 3 (Chebyshev vs. Markov). �e Chebyshev inequality tends to give be�er bounds than the

Markov inequality, because it also uses information about the variance of X.

1.3 Covariance

Definition 6 (Covariance). Let X and Y be two jointly distributed random variables with finite

variances. �en, the covariance of X and Y, Cov [X, Y], is defined to be

Cov [X, Y] = E [(X− E [X]) · (Y − E [Y])] .

Remark 4 (Intuition on Covariance). Covariance is a measure of how much two random variables

change together.

Corollary 6 (Variance Seen as Covariance). Let X be a random variable. �en,

Var [X] = Cov [X,X] .

Proof. By Definition 6, Cov [X,X] = E [(X− E [X]) · (X− E [X])] = E
[

(X− E [X])2
]

. However, by

Definition 5, Var [X] = E
[

(X− E [X])2
]

. �

Lemma 7 (Covariance). Let X and Y be two jointly distributed random variables with finite variances.

�en,

Cov [X, Y] = E [X · Y] − E [X] · E [Y] .
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Proof. By Definition 6,

Cov [X, Y] = E [(X− E [X]) · (Y − E [Y])]

= E [X · Y − X · E [Y] − E [X] · Y + E [X] · E [Y]]

= E [X · Y] − E [X · E [Y]] − E [E [X] · Y] + E [E [X] · E [Y]]

= E [XY] − E [X]E [Y] − E [X]E [Y] + E [X]E [Y]

= E [XY] − E [X]E [Y] �

Corollary 8 (Covariance of Two Independent Random Variables). Let X and Y be two independent

random variables. �en,

Cov [X, Y] = 0 .

Proof. WhenX and Y are independent, by Proposition 1, E [XY] = E [X]E [Y]. But then, by Lemma 7,

Cov [X, Y] = E [XY] − E [X]E [Y] = E [X]E [Y] − E [X]E [Y] = 0 . �

Remark 5 (Uncorrelated Random Variables). Note that when Cov [X, Y] = 0, we say that X and Y

are uncorrelated. So, independent variables are a special case of uncorrelated variables. We will not

occupy ourselves further with uncorrelated variables though.

1.4 Revisiting Variance

Lemma 9 (Variance of a Linear Combination of Two Random Variables). Let a, b ∈ R. Let X and Y

be two random variables. �en,
{

Var [aX+ bY] = a2Var [X] + b2Var [Y] + 2abCov [X, Y]

Var [aX− bY] = a2Var [X] + b2Var [Y] − 2abCov [X, Y]

Proof. By Proposition 4,

Var [aX± bY] = E
[

(aX± bY)2
]

− (E [aX± bY])2

= E
[

a2X2 + b2Y2 ± 2aXbY
]

− (E [aX]± E [bY])2

= E
[

a2X2
]

+ E
[

b2Y2
]

± E [2abXY] − (aE [X]± bE [Y])2

= a2E
[

X2
]

+ b2E
[

Y2
]

± 2abE [XY] −
(

a2E [X]2 + b2E [Y]2 ± 2abE [X]E [Y]
)

= a2 ·
(

E
[

X2
]

− E [X]2
)

+ b2 ·
(

E
[

Y2
]

− E [Y]2
)

± 2ab · (E [XY] − E [X]E [Y])

= a2Var [X] + b2Var [Y]± 2abCov [X, Y] �

Corollary 10 (Variance of Sum of Two Random Variables). Let X and Y be two random variables.

�en,

Var [X+ Y] = Var [X] + Var [Y] + 2Cov [X, Y] .

Proof. We use Lemma 9 with a = b = 1. �

Corollary 11 (Variance of Sum of Two Independent Random Variables). Let X and Y be two inde-

pedent random variables. �en,

Var [X+ Y] = Var [X] + Var [Y] .
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Proof. By Corollary 10, Var [X+ Y] = Var [X] +Var [Y] + 2Cov [X, Y]. However, since X and Y are

independent, by Corollary 8, Cov [X, Y] = 0. �

�eorem 12 (Variance of Sum of Scaled Independent Random Variables). Let Y1, Y2, . . . , YT be T

pairwise independent random variables and let a1, a2, . . . , aT be T positive real constants. Further, let

X =
∑T

i=1(ai · Yi). �en,

Var [X] =

T∑

i=1

(

a2
i · Var [Yi]

)

.

Proof. First note that

µX = E [X] = E

[

T∑

i=1

aiYi

]

=

T∑

i=1

E [aiYi] =

T∑

i=1

aiE [Yi] =

T∑

i=1

aiµYi
.

We have,

Var [X] = E
[

(X− µX)
2
]

(Definition 5)

= E

[

(∑T
i=1(aiYi) −

∑T
j=1(aiµYj

)
)2
]

(given)

= E

[

(∑T
i=1 aiYi −

∑T
i=1 aiµYi

)2
]

(use same index)

= E

[

(∑T
i=1 ai (Yi − µYi

)
)2
]

(merge the sums)

= E
[(∑T

i=1 ai (Yi − µYi
)
)

·
(∑T

j=1 aj

(

Yj − µYj

)

)]

(rewrite the square)

= E
[∑T

i=1

∑T
j=1 aiaj (Yi − µYi

)
(

Yj − µYj

)

]

(expand)

=
∑T

i=1

∑T
j=1 E

[

aiaj (Yi − µYi
) ·
(

Yj − µYj

)]

(linearity of expectation)

=
∑T

i=1

∑T
j=1 aiajE

[

(Yi − µYi
) ·
(

Yj − µYj

)]

(property of expectation)

We now look at the terms of the last quantity.

• When i = j, then

E
[

(Yi − µYi
) ·
(

Yj − µYj

)]

= E
[

(Yi − µYi
)
2
]

= Var [Yi] ,

where the last equality was obtained by the definition of variance (Definition 5).

• When i 6= j, then

E
[

(Yi − µYi
) ·
(

Yj − µYj

)]

= Cov
[

Yi, Yj
]

,

where the last equality was obtained by the definition of covariance (Definition 6). However,

we also know that Yi and Yj are independent. Hence, by Corollary 8, Cov
[

Yi, Yj
]

= 0.

�us, with the above observations we obtain

T∑

i=1

T∑

j=1

aiajE
[

(Yi − µYi
) ·
(

Yj − µYj

)]

=

T∑

i=1

a2
i · Var [Yi]

�e theorem follows. �
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1.5 Weak Law of Large Numbers

�eorem13 (Weak Law of Large Numbers). Let Y1, . . . , YT be a sequence of independent identically

distributed random variables, with expected value µ and bounded variance. For every ǫ > 0,

Pr

(∣

∣

∣

∣

∣

1

T

T∑

i=1

Yi − µ

∣

∣

∣

∣

∣

> ǫ

)

→ 0, as T → ∞ (1)

Proof. Since Y1, . . . , YT are independent identically distributed random variables, let µ be the com-

mon expectation of them and σ their common variance. Now, define the random variable

X =

T∑

i=1

1

T
· Yi =

1

T

T∑

i=1

Yi .

By linearity of expectation we get E [X] =
∑T

i=1
1
T
E [Yi] = µ.

Since all the Yi are independent, we use �eorem 12 with a1 = a2 = . . . = aT = 1
T
, and thus,

Var [X] =
∑T

i=1

(

1
T2Var [Yi]

)

=
∑T

i=1
σ2

T2 = σ2

T
.

We now apply Chebyshev’s inequality (�eorem 5) and obtain for any ǫ > 0,

Pr (|X− µ| > ǫ) 6
σ2

Tǫ2
. �

2 Applications on Identically Distributed Events

Examples with (biased) coins are our best friends on understanding the bounds mentioned earlier.

For more examples and more advanced techniques see [12].

Lemma 14 (Variance of a Biased Coin). We are given a coin that gives heads with probability p.

Show that the variance of a single coin toss is p(1− p).

Proof. Let X be the (indicator) random variable that is 1 if we observe heads a�er a single coin toss

and 0 otherwise. By Proposition 4, the variance of X is

Var [X] = E
[

X2
]

− (E [X])2 .

However, E
[

X2
]

= p · 12 + (1 − p) · 02 = p. Also, E [X] = p · 1 + (1 − p) · 0 = p. Hence, by

substitution we have

Var [X] = p− (p)2 = p− p2 .

In other words, Var [X] = p(1− p) as needed. �

Corollary 15 (Upper Bound on Variance of a Single Coin Toss for Any Biased Coin). We are given

a biased coin that succeeds (gives heads) with probability p. Show that the variance of a single coin

toss is at most 1
4
.

Proof. Let X be the (indicator) random variable that is 1 if the outcome of a single coin toss is heads,

and 0 otherwise. By Lemma 14 we know that Var [X] = p(1− p).
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Figure 1: �e function f(p) = p(1− p), for 0 6 p 6 1.

However, the function f(p) = p(1−p) is a second degree polynomial for 0 6 p 6 1. Moreover,

f(p) has roots p1 = 0 and p2 = 1 and obtains the maximum for p = 1
2
. Figure 1 shows the plot of

f(p) as p ranges in the [0, 1] interval. �us, for any 0 6 p 6 1, it holds

f(p) 6 f (1/2) .

Hence, by substitution, f(p) 6 f
(

1
2

)

= 1
2
·
(

1− 1
2

)

= 1
4
. In other words, Var [X] 6 1

4
. �

Lemma 16 (Variance of Multiple Independent Identically Distributed Coin Tosses). We are given a

coin that succeeds (gives heads) with probability p. We toss the coin T times. Show that the variance

is T · p · (1− p).

Proof. Let Yj be the indicator random variable for the j-th coin toss, where j ∈ {1, . . . , T }. �at is,

Yj = 1 if the outcome is heads for the j-th coin toss and Yj = 0 otherwise (tails). By Lemma 14,

Var
[

Yj
]

= p(1 − p). �e random variable X =
∑T

j=1 Yj indicates how many successes we had

a�er T coin tosses. Since each coin toss is independent of all the other ones, by �eorem 12 with

a1 = a2 = . . . = aT = 1 we get

Var [X] =

T∑

j=1

Var
[

Yj
]

. (2)

Moreover, every time we toss the same coin, and thus the events are identically distributed with

success probability p. Hence, by Lemma 14, the variance on each coin toss is p(1 − p). In other

words, Var [Y1] = Var [Y2] = . . . = Var [YT ] = p(1−p). �us, by (2), Var [X] = T ·p · (1−p). �

Corollary 17 (General Upper Bound on Variance of Multiple Independent Identically Distributed

Coin Tosses). We are given a coin that succeeds (gives heads) with probability p. We toss the coin T

times. Show that the variance is at most T/4.

Proof. By Lemma 16,Var [X] = T ·p·(1−p). Similar to Corollary 15, f(p) = p(1−p) 6 f(1/2) = 1
4
.

�us, regardless of what p is,

Var [X] 6
T

4
. �
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Example 1 (Fair Coin Tossing). We toss a fair coin 100 times and 80 times we observe heads. What

is the probability of this event?

Solution. Let X =
∑100

i=1 Xi be the number of times that we observed heads, where the Xi’s are

indicator random variables indicating whether we obeserved heads or not in the i-th trial. Note

that the expectation is E [X] = Tp = 100 · (1/2) = 50. Also note that by Lemma 16, Var [X] =

Tp(1− p) = 100 · (1/2) · (1/2) = 25. A direct computation for the probability q = Pr (X = 80) of

such an event gives, q =
(

100
80

)

· 2−80 · 2−20 =
(

100
80

)

· 2−100 ≈ 4.2 · 10−10.

• Markov’s inequality (�eorem 3) gives Pr (X > 80) 6 50/80 = 0.625.

• Chebyshev’s inequality (�eorem 5) gives Pr (|X− 50| > 30) 6 25
302 = 2.7 · 10−2. �

3 Sketch of Some Learning �eory Algorithms

Typically we derive an algorithmA to a�ack a particular problem andAworkswith high probability.

Roughly, A computes a solution s such that

• either s achieves an exact optimum, or

• s achieves an approximate (almost exact) optimum.

Hence, depending on the guarantee that A has (that is, exactly correct or approximately correct),

our big theorem is a statement of the form

Pr (A is exactly correct) > 1− δ , (3)

or

Pr (A is approximately correct) > 1− δ . (4)

�us, δ is an upper bound for the probability that A will fail to deliver its guarantee at the end of

the execution. We refer to δ as confidence even if in reality our true confidence is at least 1− δ.

Remark 6 (δ is a parameter). δ in (3) and (4) is a parameter for algorithm A. �is implies that one

provides her favorite δ as part of the input for A and A will deliver a solution s that satisfies (3) or (4)

depending on the case where A refers to.

Remark 7 (PAC Learning). We note that in order to capture the notion of approximation in (4), we

introduce another variable ε. In this case we discuss about algorithms with probably approximately

correct (PAC) guarantees.

PAC learning, was introduced by Leslie Valiant1 in [16]. We will not occupy ourselves with PAC

learning further here apart from the next remark. Our focus will be (3); that is probably exactly correct

learning 2. If you are interested in such kinds of questions around learning, sign up for the CS 6501 -

Learning �eory course next semester.

Remark 8 (On Running Time Efficiency). An algorithmA that satisfies (3) or (4) is called efficient if

its running time complexity has polynomial dependence on 1
δ
, 1
ε
, and the rest of the input parameters

(typically a notion of the dimension of the problem).

1PAC learning was recognized as one of the major contributions that Leslie Valiant offered to theory of computation

and Leslie Valiant received a Turing award in 2010. (�e Turing award is the highest honor for anyone working in

computer science, similar to the Nobel prize in other disciplines.)
2Please see Section 4 for some related discussion.
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3.1 Typical Design of a PAC Learning Algorithm

�e typical building blocks on the design of a learning algorithm are the following.

Step 1. Design A that works when all the (randomized) processes work in its favor.

Step 2. Identify which (randomized) processes may fail during the execution. We call such failures

bad events.

Step 3. Count, or give an overestimate, of the processes for Step 2. Say that we have at most b

such processes where things can go wrong.

Step 4. We now resort to the union bound (Proposition 2) and distribute the overall failure prob-

ability δ to all 6 b processes where Amay fail. �e simplest way of doing that is by requiring each

individual process to fail with probability at most δ
b
.

Hence, if we manage to bound the probability of every bad event by the quantity δ
b
, then we

have an algorithm A that satisfies (3).

To see this, note that some bad event Bi will happen with probability

Pr (B1 ∪ B2 ∪ · · · ∪ Bb) = Pr

(

b
⋃

i=1

Bi

)

.

However, by the union bound,

Pr

(

b
⋃

i=1

Bi

)

6

b∑

i=1

Pr (Bi) .

Our hard work in Step 5 will guarantee Pr (Bi) 6
δ
b
for every i ∈ {1, . . . , b}. Hence,

Pr

(

b
⋃

i=1

Bi

)

6

b∑

i=1

Pr (Bi) 6

b∑

i=1

δ

b
= δ . (5)

In other words, some bad event will happen with probability at most δ. Rephrasing, none bad

event will happen with probability at least 1− δ. �is argument will give (3).

Step 5. Find a way to guarantee that for each bad event Bi, with i ∈ {1, . . . , b}, it holds

Pr (Bi) 6
δ

b
. (6)

�us, apart from counting in Step 3, our hard work is concentrated on trying to achieve (6) in

Step 5. Arguing for Step 5 typically depends on the problem that we want to solve.

4 Historical Remarks and Further Reading

Section 3 presented a basic algorithmic idea that is behind several algorithms encountered in Valiant’s

PAC model of learning. However there are various models of learning within the broad spectrum of

(computational) learning theory. One of them is the membership query (MQ) model3 of Angluin [1].

3Section 1.2 in [1] contrasts briefly the membership query model and the PAC model of learning.
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Roughly, in the MQ model the learner queries points from the domain and receives an answer as to

whether or not these points belong to a particular concept or not (i.e., whether the points are positive

or negative); the goal is to identify the target concept precisely (i.e., the function that determines the

positive/negative label associated with each point of the domain). Note that there can be other mod-

els of learning that are somewhere between exact identification and probably approximately correct

identification. Bshouty, Jackson and Tamon discuss such in-between models in [7]; they refer to our

case of probably exactly correct learning as PExact learning.

A natural extension for various models of learning is the notion of noise. �at is, we want to

be able to discuss and argue about the guarantees for the algorithms that we design in the presence

of uncertain information. One very natural variant of noise is along the lines of the homework;

that is, the answer to the label of some queries can be wrong. A variant of such misclassification

noise was considered by Angluin and Laird in [3], called random misclassification noise, in Valiant’s

PAC framework, where, according to the model, the label of each instance that is queried can have

incorrect label independently with probability p < 1/2. It can be shown4 that pre�y much anything

that is PAC learnable without noise is also PAC learnable with random misclassification noise; the

notable exception is the exclusive or (XOR) function. �ere are other kinds of noise as well; e.g.,

the misclassification on the requested labels can be malicious and depend on the whole history of

the labeled instances that have been previously returned to the learner. Sloan discusses this kind

of noise in [14] and also describes other main variants of noise in the framework of PAC learning.

In fact malicious noise can arise not only on the label of an instance but also on the instance5 that

is presented to the learner; this kind of malicious noise was considered by Valiant in [17] and was

explored in detail by Kearns and Li in [11]. Beyond the models described by Sloan in [14], the nasty

noise model of Bshouty, Eiron and Kushilevitz [6] should also be mentioned.

Similar to the random misclassification noise model of Angluin and Laird in the PAC learning

framework, Sakakibara has considered this kind of noise in the MQ framework [13]. An interesting

paper with some interesting problems along these lines is [8]. Note that even in the MQ model we

can have various kinds of noise that one can study depending on the underlying model of a problem.

For example, in [4] it is considered the case where the answer to the classification of an instance

can be apart from positive and negative also “I don’t know” ; that is, the teacher is not necessarily able

to identify whether a particular instance belongs to a particular concept or not. �ere are also other

variants; for example a certain limited amount of “I don’t know” ’s are allowed in the responses of

the teacher as in [15], or even some mistakes are malicious as in [2]. Another variant is that of the

consistently ignorant teacher of [9], in the sense that the teacher can not answer a query with “I

don’t know” if the answer to the particular query can be inferred by answers to other queries that

have been provided earlier in the learning process.

As a concluding remark we should perhaps mention that characterizing the sample size needed

for PAC learnability is ultimately associated with the notion of the Vapnik-Chervonenkis dimen-

sion (VC-dimension) of the concept class being learnt [18]. In [5] a connection was established

with PAC learning by using the techniques of the pioneering work of Vapnik and Chervonenkis

on distribution-free convergence of empirical probability estimates.

4It is perhaps fair to say that we have understood be�er this kind of noise in Kearns’ framework of statistical queries

[10].
5In PAC learning the learner does not get to choose which instances are queried. Rather the instances are drawn

following a distribution that is induced on the domain. It is in the MQ model that the learner has the power to select

which instances to query for their labels.
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