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Abstract

These notes were created for CS 6501 - Learning Theory at UVA during the Spring of 2017. The

primary scope of the notes is the exposition of Valiant’s model of evolvability [8].

1 A Naive High-Level Description of Algorithms Inspired by Nature
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Figure 1: A local search procedure that starts

from the hypothesis h1, follows the hypotheses

h2, h3, h4, h5, h6 and h7 in that order. For all the

hypotheses apart from h7 we see the respective

neighborhoods with some circles encompassing the

neighbors of each hypothesis. Note that both the ra-

dius of each circle, as well as the center need not be

uniform throughout the whole process (though, typ-

ically there is li�le - if any - variation on the mecha-

nism that generates the neighborhood based on each

hypothesis).

Nature, and in particular evolution, has inspired

different frameworks in computer science. The

main model that we will examine is Valiant’s

model of evolvability [8]. However, another frame-

work that is very close to evolvability is that of evo-

lutionary algorithms [3, 9]. We note that there is a

discussion in the introductory section of Valiant’s

seminal paper [8] on the comparison between the

two models; in our discussion below we will try to

illustrate such differences and similarities.

From the point of view of computer science and

in particular of learning, algorithms that are in-

spired by natural evolution, are local search pro-

cedures [5]; inevitably there is also connection to

Markov chains [7]. Hence, in between the different

iterations (generations) of these procedures, a pool

of candidate hypotheses is generated (offsprings)

forming a neighborhood where search is being per-

formed. Search is being performed in the sense

that a subset of the members of the neighborhood

survives to the next iteration (generation). The hy-

potheses that survive in between the different it-

erations typically behave well, or be�er, compared

to past hypotheses and in a sense are naturally se-

lected. Thus, there is a notion of a fitness function

that indicates how well a particular functionality

(a member of the local search neighborhood be-

tween the iterations; as a parallel, think of an organism, a cell, etc.) that is being evolved, is fit to its

environment. Figure 1 gives an example where only one hypothesis survives a�er each iteration.
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2 An Informal Description of Evolvability

Evolution is seen as a form of learning. The truth values true and false are represented by 1 and −1

respectively. The fitness function that guides the search is called performance. For a target c and a fixed

distribution Dn over {0, 1}n, the performance of a hypothesis h, called the correlation of h and c, is,

PerfDn
(h, c) =

∑

x∈{0,1}n

h(x) · c(x) · Prx∼Dn
(x) (1)

= 1− 2 · Prx∼Dn
(h(x) 6= c(x)) .

Evolution starts with an initial hypothesis h0, and produces a sequence of hypotheses using a local-search

procedure inH. Similarity between h and c in an underlying distributionDn is measured by the empirical

performance PerfDn
(h, c, |S|) which is evaluated approximately by drawing a random sample of size |S|

and computing

PerfDn
(h, c, |S|) =

1

|S|

∑

x∈S

h(x) · c(x) . (2)

Naturally, we want the neighborhood with the candidate hypotheses in each step to have size bounded by

poly(1/ε, 1/δ, n, size(h)). Further, we alsowant this neighborhood to be computed efficiently ; i.e. within

poly(1/ε, 1/δ, n, size(h)) time between each iteration (generation).

The mutator function is responsible for generating the neighborhoodN(h) and selecting one hypoth-

esis from the neighborhood as the output for the next iteration (generation). For each hypothesis h1 in

the neighborhood, the mutator function first computes an empirical value of ν(h1) = PerfDn
(h, c, s)

and also associates each hypothesis h1 with a weight PrN (h, h1). Then, based on the value of a real

constant t called tolerance, we obtain1

{

Bene = {h1 ∈ N(h) | ν(h1) > ν(h) + t}

Neut = {h1 ∈ N(h) | ν(h1) > ν(h) − t} \ Bene

The final output of the mutator function is based on the following rule2:

• if Bene 6= ∅ then output h1 ∈ Bene with probability PrN (h, h1) /
∑

h1∈Bene PrN (h, h1)

• if Bene = ∅ then output r1 ∈ Neut with probability PrN (h, h1) /
∑

h1∈Neut PrN (h, h1).

Ultimately, the goal of the evolution is to produce, within a realistic time period (i.e. within poly(1/ε,-

1/δ, n) generations), a hypothesis h ∈ H such that

Pr (PerfDn
(h, c) < PerfDn

(c, c) − ε) < δ . (3)

3 Monotone Conjunctions under the Uniform Distribution

Given a set of Boolean variables x1, . . . , xn, we assume that there is an unknown target c ∈ C, a monotone

conjunction of some of these variables. Let C be the concept class of all possible monotone conjunctions

in their natural representation. For a threshold q, let C6q be the set of conjunctions from C that contain

at most q variables. Further, let C>q = C \ C6q. Now let,

c =

m
∧

i=1

xi ∧

u
∧

k=1

yk and h =

m
∧

i=1

xi ∧

r
∧

ℓ=1

wℓ. (4)

1Note that even if the performance of a hypothesis in the neighborhood is larger compared to the current hypothesis, it is the

value of the tolerance t that decides whether this hypothesis in the neighborhood will be characterized as beneficial or neutral.

In fact, in the context of evolvability, t should never be below some poly(ε, δ, 1/n).
2Additional rules can be defined and are discussed in [8], but they are beyond the scope of this class.
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Variables in the target c are called good, otherwise bad. The x’s are mutual variables, the y’s are undis-

covered (or missing) and the w’s are redundant (or wrong). With |h| we denote the size (or length) of a

conjunction h; the number of variables that it contains. Given a size q, a hypothesis h is short when

|h| 6 q,mediumwhen |h| = q+1 and long when |h| > q+1. For a target c,H>2 refers to hypotheses for

which u > 2,H=1 refers to hypotheses for which u = 1 andH=0 refers to hypotheses for which u = 0.

For the uniform distribution Un over {0, 1}n (each truth assignment has probability 2−n), (1) gives,

PerfUn
(h, c) = 1− 21−m−r − 21−m−u + 22−m−r−u . (5)

4 Two Algorithms for the Evolution of Monotone Conjunctions

Valiant’s Swapping Algorithm. The swapping algorithm for monotone conjunctions was introduced

by Valiant in [8], was simplified in [2], subsequently analyzed with dri�ing targets in [6], and recently

was obtained as a special case of a meta-algorithm for binomial distributions in [1]. The neighborhoodN

of a conjunction h is the set of conjunctions that arise by adding a variable (neighborhoodN+), removing

a variable (neighborhood N−), or swapping a variable with another one (neighborhood N±), plus the

conjunction itself3. Thus, N = N− ∪N+ ∪N± ∪ {h}. As an example, let h = x1 ∧ x2, and n = 3. Then,

N− = {x1, x2}, N
+ = {x1∧x2∧x3}, andN± = {x3∧x2, x1∧x3}. Note that |N| = O (n |h|) in general.

Algorithm 1 presents the mutator function for the swapping algorithm.

Algorithm 1:Mutator function for the swapping algorithm under the uniform distribution.

Input: dimension n, δ ∈ (0, 1), ε ∈ (0, 2),H ∈ {C6q,C}, h ∈ H

Output: a new hypothesis h ′

1 q← ⌈lg (5/(2ε))⌉;
2 if |h| > 0 then Generate N− else N− ← ∅;
3 if |h| < q then Generate N+ else N+ ← ∅;
4 if |h| 6 q then Generate N± else N± ← ∅;
5 Bene← ∅; Neutral← {h};

6 tℓ ← 2−2q; tu ← 21−q;

7 if (H = C) and (|h| > q) then t← tu; ǫs ← tu/4; δs ← δ/(8n2 lg(8n/δ)) ;

8 else t← tℓ; ǫs ← tℓ; δs ← δ/(12q2n) ;

9 SetWeight(h, h, N−, N+, N±); νh ← Perf(h, ǫs, δs);

10 for x ∈ N+, N−, N+− do

11 SetWeight(x, h, N−, N+, N±); νx ← Perf(x, ǫs, δs);

12 if νx > νh + t then Bene← Bene ∪ {x} ;

13 else if νx > νh − t then Neutral← Neutral ∪ {x} ;

14 if Bene 6= ∅ then return Select(Bene) else return Select(Neutral);

Tolerance t is normally tℓ; however, when H = C and |h| > q then t = tu. Perf computes the

empirical performance of h w.r.t. c over the distribution Un within ǫs of its true value, with probability

at least 1− δs. SetWeight assigns the same weight to all members of {h}∪N− ∪N+ so that they add

up to 1
2 , and the same weight to all the members ofN± so that they add up to 1

2 . Select computes the

sum of weights W of the conjunctions in the set passed as argument, and returns a hypothesis h ′ with

probability wh ′/W, where wh ′ is the weight of h ′.

�e (1+1) EA. For a hypothesis h, the operator Mutate generates a hypothesis h ′ by first initializing

h ′ to h and then flipping each bit with probability 1/n. Further, when h is short, h ′ is accepted as a viable

neighbor only if h ′ is also short. When h is long, h ′ is accepted as a viable neighbor only if |h ′| 6 |h|,

3As h will be clear from the context, we write N instead of N(h).
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otherwise h is the only candidate in the neighborhood again. Algorithm 2 presents the mutator function.

USelect, returns uniformly at random one of the elements of the set that is passed as argument.

Algorithm 2:Mutator function of the (1+1) EA under the uniform distribution.

Input: dimension n, δ ∈ (0, 1), ε ∈ (0, 2),H ∈ {C6q,C}, h ∈ H

Output: a new hypothesis

1 q← ⌈lg (5/(2ε))⌉;
2 h ′ ← Mutate(h);

3 if
(

(|h| > q) and (|h ′| 6 |h|)
)

or
(

(|h| 6 q) and (|h ′| 6 q)
)

then N← {h ′}; else N← ∅;
4 tℓ ← 2−2q; tu ← 21−q;

5 if |h| > q then t← tu; ǫs ← tu/4; δs ← δ2/(72en3); else t← tℓ; ǫs ← tℓ; δs ← δ2/(544en2q) ;

6 νh ← Perf(h, ǫs, δs);

7 if N = ∅ then return h; else νh′ ← Perf(h ′, ǫs, δs);

8 if νh′ > νh + t then return h ′; else if νh′ > νh − t return USelect({h} ∪ {h ′}); else return h ;

5 On the Local Search Procedure

Local search, when switching to h ′ from h, is guided by the quantity

∆ = PerfUn

(

h ′, c
)

− PerfUn
(h, c) . (6)

Figure 2 presents the sign of ∆ when we deal with hypotheses that are obtained from the current one, by

adding, removing, or swapping a variable. Note that while the sign of an arrow may be fully determined,

it is the value of the tolerance t that defines the sets Bene and Neut that guide the search.

good bad

(a) u > 2

badgood

(b) u = 1

good bad

(c) u = 0

Figure 2: Arrows pointing towards the nodes indicate addition of one variable and arrows pointing away

from a node indicate removal of one variable. �is is consistent with arrows indicating swapping a pair of

variables. Let ∆ be as in (6). �ick solid lines indicate ∆ > 0. Simple lines indicate ∆ = 0. Dashed lines

indicate ∆ < 0. Figure 2(a) holds when u > 2; Figure 2(b) when u = 1; Figure 2(c) when u = 0.

Comparingh ′ ∈ N+ withh. We introduce a variable z in the hypothesish. If z is good,∆ = 2−|h| > 0.

If z is bad, ∆ = 2−|h|(1− 21−u).

Comparing h ′ ∈ N− with h. We remove a variable z from the hypothesis h. If z is good, ∆ =

−21−|h| < 0. If z is bad, ∆ = −21−|h|(1− 21−u).

Comparing h ′ ∈ N± with h. Replacing a good with a bad variable gives ∆ = −21−|h|−u < 0.

Replacing a good with a good, or a bad with a bad variable gives ∆ = 0. Replacing a bad with a good

variable gives ∆ = 22−|h|−u > 0.
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6 Structure of Solutions under the Uniform Distribution

Definition 6.1 (Best q-Approximation). Let h be a hypothesis such that |h| 6 q and ∀h ′ 6= h, |h ′| 6 q :

PerfDn
(h ′, c) 6 PerfDn

(h, c) . We call h a best q-approximation of c.

�eorem 6.2 (Structure of Best Approximations; [2]). �e best q-approximation of a target monotone con-

junction c is c if |c| 6 q, or any hypothesis formed by q good variables if |c| > q.

Lemma6.3 (Performance Lower Bound, MediumTarget). Let c be a targetmonotone conjunction ofmedium

size. A best q-approximation h of c has PerfUn
(h, c) = 1− 2−q.

Proof. �eorem 6.2 implies m = q, r = 0, u = 1. Using (5) we have: PerfUn
(h, c) = 1 − 21−m−r −

21−m−u + 22−m−r−u = 1− 21−q − 2−q + 21−q = 1− 2−q.

Corollary 6.4. q >
⌈

lg
(

5
2ε

)⌉

, |h| = q, |c| = q+1, all variables in h are good=⇒ PerfUn
(h, c) > 1− 2ε

5 .

Lemma 6.5 (Performance Lower Bound, Long Target). Let h be a hypothesis such that |h| > q and consider

a long target monotone conjunction c. �en, PerfUn
(h, c) > 1− 5

2 · 2
−q.

Proof. �e setup of the lemma implies m + r > q, and m + u > q + 2. Using (5), PerfUn
(h, c) >

1− 21−m−r − 21−m−u > 1− 21−q − 2−1−q = 1− 5
2 · 2

−q.

Corollary 6.6. q >
⌈

lg
(

5
2ε

)⌉

, |h| > q, |c| > q+ 1 =⇒ PerfUn
(h, c) > 1− ε.

7 Convergence and Complexity of the Swapping Algorithm

Proposition 7.1 ([4]). Let X1, . . . , XR be R independent random variables, each taking values in the range

I = [α,β]. Letµ denote themean of their expectations. �enPr
(∣

∣

∣

1
R

∑R
i=1 Xi − µ

∣

∣

∣
> ǫ

)

6 2e−2Rǫ2/(β−α)2 .

Within 2q generations we will form a solution satisfying the following: when the target is short, it

will be identified precisely; when the target is medium, a best q-approximation will be returned; when

the target is long, a hypothesis of size q will be returned (not necessarily a best q-approximation).

�eorem 7.2 (Evolution starting in C6q under Un). Let the distribution be Un over {0, 1}n. Let q =

⌈lg (5/(2ε))⌉. Starting with a short hypothesis and considering hypotheses in C6q, the swapping algorithm,

in at most 2q generations, will evolve a hypothesis h such that Pr
(

PerfUn
(h, c) > 1− ε

)

> 1− δ/2, using

total sample size O
(

n
ε4 ·

(

ln 1
ε

)2
·
(

lnn+ ln 1
δ + ln ln 1

ε

)

)

.

Proof. Let h ∈ C6q. �en, |N| =
∣

∣N+ ∪N− ∪N± ∪ {h}
∣

∣ = |N+|+ |N−|+
∣

∣N±
∣

∣+ 1 = (n− |h|) + |h|+

|h| (n − |h|) + 1 = (|h| + 1)n − |h|2 + 1 6 (|h| + 2)n 6 (q + 2)n. Our solution strategy implies that

evolution requires no more than 2q generations for the convergence. As a consequence, evolution needs to

compute the empirical performance of at most 2q(q+2)n = 2q2n+4qn 6 6q2n hypotheses. Tolerance

is t = tℓ = 2−2q > ε2/25. Requiring R >

⌈

2
t2ℓ

ln
(

24q2n
δ

)⌉

samples for estimating the empirical

performance of each hypothesis, it follows by Hoeffding’s bound (Proposition 7.1), using α = −1 and

β = 1, that the empirical performance of each hypothesis is estimated within ǫs = tℓ of its exact value

with probability at least 1 − δ/(12q2n). As the number of different hypotheses is not more than 6q2n,

by the union bound, the performance of every hypothesis in this phase is computed within ǫs = tℓ of its

exact value with probability at least 1−
∑6q2n

i=1 δ/(12q2n) = 1− δ/2.
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8 Convergence and Complexity of the (1+1) EA

Lemma 8.1. h1 ∈ H>2, h2 ∈ H>2, |h2| < |h1| 6 q =⇒ PerfUn
(h1, c) > PerfUn

(h2, c) + 21−2q.

Lemma 8.2. h1 ∈ H=1, h2 ∈ H>2, |h2| 6 q =⇒ PerfUn
(h1, c) > PerfUn

(h2, c) + 2−q.

Lemma 8.3. h1 ∈ H=0, h2 ∈ H=1, |h1| 6 q =⇒ PerfUn
(h1, c) > PerfUn

(h2, c) + 21−q.

Lemma 8.4. h1 ∈ H=0, h2 ∈ H>2, |h1| 6 q, |h2| 6 q =⇒ PerfUn
(h1, c) > PerfUn

(h2, c) + 3 · 2−q.

Lemma 8.5 (Phase I). Let Dn = Un. Starting with a short hypothesis h0, the (1+1) EA, assuming all the

empirical estimates behave as expected, within ⌈16enq/δ⌉ generations, with probability at least 1 − δ/16,

will evolve a hypothesis h such that, either h ∈ H=1 ∪H=0, or it is the case that h ∈ H>2 and |h| = q.

Lemma 8.6 (Phase II). Let Dn = Un. Unless the target is long, starting with a hypothesis h0 such that

h0 ∈ H>2 and |h0| = q, the (1+1) EA, assuming all the empirical estimates behave as expected, within
⌈

16en2q/δ
⌉

generations, with probability at least 1− δ/16, will evolve a hypothesis h ∈ H=1 ∪H=0.

Lemma 8.7 (Phase III). Let Dn = Un. Let h0 ∈ H=1 such that |h0| 6 q. �e (1+1) EA, assuming all the

empirical estimates behave as expected, within
⌈

16en2/δ
⌉

generations, with probability at least 1 − δ/16,

will, either maintain a best q-approximation for a target of size q+ 1, or evolve a hypothesis h ∈ H=0.

Lemma 8.8 (Phase IV). Let Dn = Un. For an initial hypothesis h0 ∈ H=0 such that |h0| 6 q, the (1+1)

EA, assuming all the empirical estimates behave as expected, within ⌈16enq/δ⌉ generations, with probability
at least 1− δ/16, will evolve to the target c.

�eorem 8.9 (Evolution Starting in C6q under Un). Let Dn = Un. Let q = ⌈lg (5/(2ε))⌉. Start-

ing with a short hypothesis, the (1+1) EA, in O
(

n2q/δ
)

generations, will evolve a hypothesis h such that

Pr
(

PerfUn
(h, c) > 1− ε

)

> 1− δ/2, using total sample size O
(

n2

δε4 · ln
1
ε ·

(

lnn+ ln 1
δ + ln ln 1

ε

)

)

.
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