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Lecturer: Javed Aslam Seribe: Jon McAuliffe

20.1 Outline

e The statistical query model

— Statistical query learning algorithms

— Simulators for noise-free statistics

o Choosing a best hypothesis in the statistical query model

20.2 The Statistical Query Model

20.2.1 Motivation

In the previous lecture, we examined the result derived by Angluin and Laird in [1]
that PAC learning is possible even in the presence of classification noise, as long as
we are able to find a hypothesis A € H which minimizes disagreement with a sample
of bounded polynomial size. This finding was subject to the information-theoretic
barrier of 1/2 on the noise rate 5. We also looked at some unfortunate complexity-
theoretic results on finding a minimally disagreeing hypothesis, which told us that
the problem is NP-hard even for relatively simple concept classes such as monotone
conjunctions.

This new difficulty, as well as the obstacles faced by our original PAC algorithms when
presented with noisy samples, stems in part from the fact that the PAC approach to
learning depends quite sensitively on the classification of every example presented.
The algorithms we have examined thus far usually make irretrievable decisions about
the desired hypothesis based on individual labels for points () € X.

In light of this realization, it makes sense to consider a formalism for learning which
relies on gross statistical properties of a population of labelled examples, rather than
on the information carried by each individual example. Consider, for example, Figure
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Figure 20.1: Two samples from the target concept [a,b]: the left without and the
right with noise.

20.1, where we wish to learn subintervals of the unit interval. Although no hypothesis
exists which correctly classifies the given noisy sample, the indicated subinterval does
have a certain statistical appeal: if the noise rate is %, then outside of [a, b], roughly
75% of the examples are negative, while within [a, b] exactly the opposite holds.

So if noise affects the statistical characteristics of a sample in a uniform way, it should
be possible to design a model of learning which first recovers statistical information
about noiseless samples from the statistics of a noisy sample, then uses the recovered
information to learn. We will spend the rest of the lecture developing a formalism
which makes this statistical intuition precise and general.

20.2.2 The Structure of a Statistical Query Learner

As depicted in Figure 20.2, a learning algorithm in the statistical query model relies
on a statistics oracle for the information it uses to select an output hypothesis. In
particular, the algorithm itself makes no use of information about particular labelled
examples, and it expects the answers to its queries to be based on the noise-free char-
acteristics of the target concept. The statistics oracle, in turn, relies on sample data
from an examples oracle which may have no noise, classification noise, malicious ad-
versarial noise, or another type of noise altogether. In cases where the data do indeed
have noise, the statistics oracle acts as a simulator, producing noise-free statistics
based on the noisy samples it draws.

The decision to divide the model into an algorithm based on noiseless statistics and
an oracle which derives those noiseless statistics from potentially noisy data proves
advantageous for two reasons.

Generality Previous efforts to cope with noise involved heuristic techniques incor-
porated directly into the learning algorithm. Here, a single algorithm automat-
ically succeeds in the presence of several different types of noise, by virtue of
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Figure 20.2: A schematic of the interface between algorithm and oracle in the statis-
tical query model.

the noiseless statistics simulator on which it relies.

Efficacy We simply state that nearly all algorithms for PAC learning in the ab-
sence of noise can be recast in terms of queries to a noiseless statistics oracle,
which immediately suggests the usefulness of the proposed formalism for robust
learning.

We now proceed first to formalize the notion of learning by statistical query, setting
aside issues of noise, then turn to the definition of simulators which produce noiseless
statistics from noisy data.

20.3 Statistical Query Learning Algorithms

20.3.1 Definitions for statistical query learning

Definition 1 A statistical query is an ordered pair (x,7), where x : X x {0,1} —
{0,1} is an indicator function on labelled examples from the instance space X, and T
is an error tolerance on the answer returned by the statistics oracle defined below.
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Definition 2 Let P, be the true probability with respect to noiseless examples from
a target concept that x = 1. A statistics oracle ST AT (¢, D) for a target concept
¢ € C and distribution D on X takes a statistical query as defined above and returns
an approximation ﬁx such that P, — 1 < ﬁx <P +r.

For example, y may indicate the event (z € [¢/,V']) A ({ = 1). A statistical learning
algorithm for the concept class depicted in Figure 20.1 will certainly be able to make
use of P, in this case. But since the statistics oracle may be using a noisy data source

and must draw a bounded number of examples, it can only return the approximation
P, which is within +7 of P, .

We mention two relevant points about these definitions somewhat prematurely.
e This definition of ST AT (¢, D) holds for arbitrary 7 > 0, though the number of

examples will of course depend on how small 7 is. We do not address exceptions,
but they do exist (e.g. when learning from a malicious adversary).

o The learning algorithm expects a correct ﬁx with probability 1. The PAC-

learning confidence parameter 6 resurfaces in the discussion of simulator design.

Definition 3 A concept class C is efficiently learnable by statistical queries
using hypothesis class H if there exists a learning algorithm L and polynomials p(-,-),
q(+,-), and r(-,-) with the following property: for any probability distribution D on X,
(Ve e C)(Ve,0 < e < 1) if L is given access to STAT (¢, D) and input €, then:

1. for every query (v, T) submitted,

o X can be evaluated in time bounded above by q(L,n)

o 1/7 is bounded above by r(%,n)
2. L will halt in time bounded above by p(*,n)
3. L outputs a hypothesis h € H such that error(h) < e.

(Here n denotes the length of any example vector x € X.)

It L is deterministic, then an e-good h will be returned with certainty. We will not
consider the case where L is randomized.
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20.3.2 An example: SQ-learning monotone conjunctions

The concept class of monotone conjunctions is the set of all boolean formulae of the
form A z;,. Recall that the PAC-learning algorithm for monotone conjunctions begins
with an initial conjunction of all variables A_; z;. It then draws a sufficiently large
sample from EX(c¢, D) and removes from the initial conjunction all x;’s which are
false in any positive example.

The approach in the statistical query model is essentially the same. The statistical
query algorithm also begins with a conjunction h = A, z;. Then, for each 2 such
that 1 < ¢ < n, the algorithm submits a query (i, 7;), where x; is [(z; = 0) A ({ = 1)]
and 7; = o=. We know that for any variable present in the target concept ¢, P, will

be 0. Therefore, if ﬁxz' > o, we have that P,;, > 0 by choice of 7;. Hence we remove

x; from h. Furthermore, if ﬁxz' < 5=, we know P, < £, again by choice of 7;.

Now, no negative examples can be misclassified by the output hypothesis &, because
we never remove a variable z; from the initial conjunction unless it is guaranteed not
to be in the target concept. Further, if a positive example is misclassified as negative
by h, it is only because an errant x; is present in A when it should have been removed.
But the total probability of such an event is at most 3°, ¢, P\, <>, cn s <n- =c.

Hence we conclude that our algorithm outputs with certainty a hypothesis h such
that error(h) < e. The relevant polynomials p(-,-), ¢(-,-) and r(-,-) are apparent.
Thus monotone conjunctions are efficiently SQ-learnable.

We now claim that similar translations into the statistical query model exist for a
wide range of efficiently PAC-learnable concept classes. One might speculate about
the existence of a “folk theorem” to the effect that every PAC-learning algorithm has
a statistical query counterpart. However, the PAC-learnable concept class of parity
functions is known not to be efficiently SQ-learnable, so we can rule out the existence
of such a theorem.

20.3.3 Summary of advantages to SQ-learning algorithms

We now present a brief synopsis of the reasons this modular approach to statistical
learning proves especially useful to us.

1. “Nearly” every PAC-learning algorithm finds re-expression in the statistical
query formalism.
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2. A correct SQ-learning algorithm is also a correct PAC-learning algorithm in the
absence of noise.

3. A correct SQ-learning algorithm is also a correct PAC-learning algorithm in the
presence of classification noise, malicious adversarial noise, ...

20.4 Simulation of Noise-Free Statistics on Noisy
Data

We now turn our attention from learning algorithms which rely on an oracle for
information about the statistical properties of noise-free samples to the design of
the statistical oracle itself. First we consider how to produce statistical data given
examples from a noise-free oracle of the type encountered in the PAC model, then we
describe how to simulate the production of noise-free statistics given an oracle with
classification noise. Other classes of noise are not considered here.

20.4.1 Producing statistics from a noise-free source of exam-
ples

Given that the statistical oracle need not concern itself with the possibility of in-
correctly labelled examples, finding a ﬁx within £7 of P, for a query (y,7) is a
straightforward exercise in elementary statistical sampling. The only complication
lies in the requirement that the value returned by the statistical oracle is a correct
ﬁx with probability at least 1 — ¢, where ¢ is the PAC-learning accuracy parameter.
In other words, we must handle é-budgeting correctly.

If the number of queries is known beforehand to be fixed, such as in the case of 5Q-
learning monotone conjunctions, we simply distribute our é-budget uniformly over
the samples drawn for each query. When the number of queries is unknown, two
approaches suggest themselves. First, we can avail ourselves of the knowledge that

) %2 = %, so that if we let ¢; = % : Z.%, then >, 0; < 6 as the series converges. Oth-
erwise, we can choose to draw a single large sample after receiving all queries, basing
the answer for each query on that sample alone. In this case, uniform convergence
tells us that for a sample size only polynomially dependent on the VC-dimension
of the query class, we can guarantee with probability at least 1 — ¢ that all of the
estimates ﬁxz' will be within £7 of the true P,,, as we desire.
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20.4.2 Producing noise-free statistics from a sample oracle
with classification noise

First, note that the treatment of this topic provided in [3] has some significant errors.
We now present an alternate treatment, which is covered in more detail in [2].

Suppose we have a query (x,7) to the statistics oracle. We want to return the
value Prix(,py[x = 1], that is, a statistic taken with respect to the noise-free oracle
FEX (e, D), but we have access only to a source of labelled examples with classification
noise X/ y(c, D). For the purposes of analysis only, consider these four different

oracles:
EX(e,D) The noise-free examples oracle
EX(e, D) The noise-free anti-examples oracle, that
is, an oracle which outputs (z, ¢(x)), where
¢ is the target concept
EX{y(e,D) The examples oracle with classification
noise rate n < %
EX/ (T D) The anti-examples oracle (as above) with
classification noise rate n
Claim 1

EX(e,D) with probability 1 —n
Ui _ 9
EXon(e, D) = { EX(¢,D) with probability n

_ EX(¢,D) with probability 1 —n
Ui _ 9
EXon(e D) = { EX(e, D) with probability n

Proof: This follows immediately from the definition of the oracles and 1. B

We can now find an expression for Prpxn (. p)[x = 1] in terms of Prxy(.n)[x = 1],
PTEX(aD)[X = 1], and 5, and do so similarly for PTEXgN(E,D)[X =1].

Claim 2
Prixn epyx =11 = (1 =n)Prexenx =1 + 1PrexeEp)lx = 1] (20.1)
Prgxn @olx =11= (1 —=n)Prexenx = 1+ nPrexenx = 1] (20.2)
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Proof: These expressions can be derived using Claim 1. B

Remember that we wish to calculate PTEX(QD)[X = 1]. We can easily compute
PrEXgN(c,D)[X = 1] and PTEXgN(E,D)[X = 1] via normal statistical sampling, and 7 is
an unknown we deal with later. So, multiplying equation 20.1 by (1 — 7), equation
20.2 by n, then subtracting 20.2 from 20.1, we obtain

(L=n)Prexn o)X =1 —=nPrexn @y =1]
= ((1=n)*Proxeplx = U+l —n)Prexeolx = 1])
— (1 =n)Prex@p)lx = U+ n*Prexnlx = 1])
= ((1 =n)* =n*)Prexep)lx = 1]
= Prgxeolx =11 =27 +7n° —7n?)
= Prpxp)x = 1](1 — 27)

And therefore we have that

(L=n)Prexn (pylx =1 —nPrpxs @p)lx =1]
(1 —2n)

Prexenplx =1] = (20.3)

Note that we can remove reference to the classification noise anti-oracle in this
equation by defining \'(z,/() 2 x(z,0), then replacing PTEXgN(E,D)[X = 1] with
PrEXgN(c,D)[X/ = 1]. Let us forego for a moment concerns about the unknown value
n. We now have a method for estimating the value P, by calculating statistical esti-
mates on noisy examples, but we need to insure that the returned value ﬁx is within
+7 of the true value. In order to accomplish this, we will need to determine what
the accuracy bounds should be on the estimates from the noisy data. Finding these
bounds is an exercise in sensitivity analysis.

20.4.3 Sensitivity analysis

Claim 3 Suppose we know that for values 0 < a,b,e,7 <1,

a = b—c (20.4)
a = be (20.5)
a = bjc (20.6)

and we want to estimate a within +71 in each case. Then for
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20.4 we must estimate b and ¢ to within +7/2
20.5 we must estimate b and ¢ to within +7/3

20.6 we must estimate b and ¢ to within +ecr/3.

Proof: 20.4 is obvious. For 20.5, one boundary case is (b + %)(c + %) = be+ e +
b% + % <a-+ % + % + % < a + 7, which checks. 20.6 is left as an exercise. R

Applying these results to our expression for Prex.,p)[x = 1], it follows that we must
estimate the numerator and denominator of the fraction to within +(1 — 25)7/3.
Repeated application of Claim 3 to the numerator tells us that the tightest estimation
interval required for the entire fraction is +(1 — 2n)7/18.

Though we do not know 7, we do know an upper bound 7;. Hence we can use an
estimation interval of (1 —2m)7z < (1 —27)13 and, by employing Chernoff bounds,

draw a noisy sample(s) large enough to guarantee that ﬁx can be within 7 of P,.

The only problem remaining is that equation 20.3 depends on the unknown noise rate
n directly, and simply substituting n, will not guarantee a reasonable P,. Further,
there is no known method of sampling from £ X/ y(c, D) so as to compute an estimate
of 7.

20.5 Choosing the Best i € H in the Statistical
Query Model

In order to get around the problem that we have insufficient knowledge about 7,
we simply run the given statistical query algorithm (which relies on our simulated
noise-free statistics oracle) many times, with many different guessed values of 7, so
that we are assured of having at least one run which produces an h; € H such that
error(h;) < e. This is depicted in figure 20.3.

We need to decide on a set of guesses at n small enough to have size bounded by
a polynomial, so that it will be feasible to search for the h; in the set of output
hypotheses which minimizes disagreement with the sample drawn from E X/ (¢, D).
But the set of guesses must also be large enough to guarantee that some e-good
hypothesis is produced.

In the previous section, we found that n needs to be known within +(1 — 25)7/18.
However, the value of 5 is unknown, and the value of 7 may be different for each query.
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Figure 20.4: A intuitive characterization of guessing at 7.

Let 7,,:, be a lower bound on the tolerance required for any query submitted by the
SQ learning algorithm. (In practice, 7., is generally simple to calculate from the
specification of the SQ learning algorithm.) Since (1 —2n;) 7 /18 < (1 —2n)7/18, it
is sufficient to find a value of 5 within +(1 — 2n;)7,,:,/18. One simple way to achieve
this is to guess values of n between 0 and n, uniformly spaced (1 — 2n;)7min /9 apart.
Note that this will require @(M) guesses which is polynomial in the relevant
learning parameters as needed.

We can reduce the number of n-guesses by noting that finding a value of n within
+(1 — 29)Tpmin /18 is also sufficient. Thus, for “large” values of 17, our guesses need to
be “closely” spaced, but for “small” values of 7, our guesses can be “further” apart.
By employing a guessing strategy similar to that depicted in Figure 20.4, one can

show that only ©(——log 1_12%) guesses are required.
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