
Perceptrons Under Verifiable Random Data Corruption

Jose E. Aguilar Escamilla

jose.efraim.a.e@gmail.com

Dimitrios I. Diochnos

diochnos@ou.edu

University of Oklahoma

Abstract

We study perceptrons when datasets are randomly corrupted by noise and subse-
quently such corrupted examples are discarded from the training process. Overall, per-
ceptrons appear to be remarkably stable; their accuracy drops slightly when large portions
of the original datasets have been excluded from training as a response to verifiable ran-
dom data corruption. Furthermore, we identify a real-world dataset where it appears to
be the case that perceptrons require longer time for training, both in the general case,
as well as in the framework that we consider. Finally, we explore empirically a bound
on the learning rate of Gallant’s “pocket” algorithm for learning perceptrons and observe
that the bound is tighter for non-linearly separable datasets.

Keywords: Perceptrons, Stability, Verifiable Random Data Corruption, Reduced Sam-
ple Size

1 Introduction

The advances in machine learning during the last few years are without a precedent with
ChatGPT [4] being perhaps the most remarkable example of the tremendous pace by which
these advances are made. Nevertheless, there are concerns about the future of artificial
intelligence and machine learning, the extent to which we can control the advances in these
disciplines, and ultimately the impact that such advances will have in our daily lives [22].

Supervised machine learning is largely developed around the idea of probably approximately
correct learning [28], which aims to generate, with high probability, a model that is highly
accurate with respect to some ground truth function that is being learnt. For this reason, for
the majority of applications, perhaps the most important metric that one cares on optimizing,
is that of accuracy (or its dual, error rate), on a validation set. Nevertheless, we are also
interested in other aspects of the learnt models, that we typically put under the broader
umbrella of trustworthy machine learning [29]; the main axes being, robustness to noise [21]
and adversaries [30], interpretability [23], and fairness [1], but one may also be interested in
other related topics; e.g., distribution shift [5], and others.

Hence, within trustworthy machine learning, and especially because of the need of explain-
able predictions, mechanisms that are inherently interpretable are put further into scrutiny, or
attempts are made so that one can substitute components of black-box methods that are dif-
ficult to explain with such mechanisms, while still maintaining good predictive accuracy [25].
In this context, a basic, but popular approach, is the use of linear models for classification
and it is such models that we explore in this work; namely, perceptrons.

1

https://orcid.org/0000-0003-4074-3178
https://orcid.org/0000-0002-2934-606X

1.1 Related Work

Different frameworks have been developed in order to study the robustness of classifiers and
how one can attack or defend the classifiers in different contexts.

Stability and Reproducibility. Algorithms that do not overfit are replace-one-stable [27];
that is, replacing a particular example (x0, y0) in the training set, will yield a model that
predicts a label on x0 similar to y0, had the learning algorithm used the original training
set which included the example (x0, y0); see, e.g., [27]. Other notions of stability are also
important and are studied in practice; e.g., how random seeds affect the performance of a
learnt model [9]. Moreover, a recent line of work explores reproducible algorithms [16], where
the idea is that the learning algorithm will generate exactly the same model when fed with
two different samples drawn from the same distribution.

Noise. Beyond stability and reproducibility, data collected can be noisy, and a rich body of
literature has been developed in order to understand better what is and what is not possible
when datasets are corrupted by noise. A notable noise model is malicious noise, where both
instances and labels can be corrupted arbitrarily by some adversary. In this model, it can
be shown [17] that if we want to allow the possibility of generating a model that has error
rate less than ε, then, the original dataset cannot suffer malicious corruption at a rate larger
than ε

1+ε . In other words, even few examples that are carefully crafted and included in the
learning process are enough to rule out models with low error rates.

Poisoning Attacks. While noise models typically assume the corruption of the examples in
an online manner, poisoning attacks [3] typically consider adversaries who have access to the
entire training set and decide how to inject or modify examples based on the full information
of the dataset. Different models and defense mechanisms can be devised against poisoned
data [13].

One approach for poisoning, corresponds to clean-label attacks [26], where the adversary
may inject malicious examples in the training set, but their labels have to respect the ground
truth of the function that is being learnt. In other words, the idea is to change the original dis-
tribution of instances to a more malicious one and make learning harder; difficult distributions
have also been studied even for perceptrons, where it can be shown that the perceptrons may
converge to solutions with significantly different time-complexity rates depending on the dis-
tribution [2]. A different line of work studies the influence that individual training examples
have on the predictions of the learnt model, by being present or absent during learning [18].
Hence, instead of introducing misinformation in the dataset, one tries to understand how
important different examples are for the learning process. In other words, how would the
model’s prediction change if we did not have access to a particular training example? Of
course, one can introduce misinformation into the dataset; e.g., [19] considers the problem of
designing imperceptible perturbations on training examples that can change the predictions
of the learnt model. Overall, poisoning attacks study the brittleness of learning algorithms
when training happens in the presence of adversaries.

As a last remark, one can also consider adversaries after training has been completed. In
this direction, we find evasion attacks, also known as adversarial examples [14]. We note,

2

however, that such adversarial settings are outside of the scope of the current work, as we
deal with training-time attacks.

Missing Data. Concluding our brief literature review, an aspect that is quite orthogonal
to the approaches discussed above, is that of dealing with missing data in our datasets. The
reasons for the emergence of such datasets can range anywhere from pure chance (e.g., a
questionnaire of a study subject is accidentally lost), to strategic information hiding (e.g.,
university applicants reveal favorable scores and hide potentially unfavorable ones in their
applications) [20]. Typically, entries with missing data will either be completely ignored
from the dataset and the training process, or some method will be devised in order to fill-in
the missing entries based on the information of the rest of the entries in the dataset [12]
so that they can subsequently be used for training. Perhaps the main difference with noise
and poisoning attacks is the fact that the learner knows that certain entries are completely
unknown in the input. Finally, we note that dealing with missing entries may also happen
during evasion attacks [7], but we stress again that evasion attacks are outside of the scope
of our work.

1.2 Our Setting: Verifiable Random Data Corruption

We explore the robustness of linear models used for classification. In particular, we study
the perceptron learning algorithm [24] when the data may, or may not, be linearly separable;
we use Gallant’s “pocket” algorithm [11] which can deal with non-linearly separable data.
Regarding the adversarial setting, we consider situations where the training data has been
randomly corrupted by noise (e.g., transmission over an unreliable medium). However, we
further assume, as is usually the case in practice, that there are flags (e.g., checksums) that
indicate whether or not the information content of individual examples has been modified. In
this context, we explore the following question:

To what extent are perceptrons tolerant of verifiable random data corruption?

One natural way of dealing with such a scenario is to simply neglect the verifiably corrupted
data altogether from the learning process. Hence, we are interested in understanding the
behavior of perceptrons, in the average case as well as in a worst case sense, under such a
simple sanitization method that effectively reduces the sample size used for learning. This
adversarial setup and the sanitization approach has been considered before in a regression
setting [10].

However, there are close connections to other adversarial models. For example, within
clean-label attacks, the adversary may duplicate examples that already appear in the dataset.
While such an approach may affect dramatically algorithms that rely on statistical properties
of the data (e.g., decision trees), using perceptrons is very close to our context. The reason
is that the weights of the learnt perceptron are a linear combination of the misclassified
examples and hence the same solution can be obtained even when duplicate examples are
omitted. Compared to the work of influence functions [18], our work explores the possibility
of arbitrarily large amounts of data being removed from the training process, instead of
carefully removing few but the most influential ones.

As a summary, we explore a mellow corruption scheme which has the benefits of (i) being
easier to analyze, and (ii) occurring quite naturally in practice.

3

2 Preliminaries and Background

Notation. We study binary classification and we use Y = {−1,+1} to denote the set of
labels, where −1 (resp. +1) corresponds to the negative class (resp. positive class). We use
X to denote the set of instances, corresponding to real vectors; i.e., X = R

n. Note that
throughout the paper we use n to denote the dimension of an instance. For two vectors
a, b ∈ R

n, we denote their inner product 〈a, b〉 =
∑n

i=1 aibi. Typically, the learner has access
to a collection T = ((x1, y1)), . . . , (xm, ym)) of training examples that are drawn iid from a
distribution D governing X × Y. Hence, learning is about selecting one appropriate model
h : X → Y from the model space H, based on T . That is, for a learning algorithm L, we have
L(T) = h. We also use the function which returns the sign of its argument; i.e., sgn (z) = +1
if z > 0 and sgn (z) = −1 if z ≤ 0. We consider the “pocket” variant of the perceptron, which
is suitable also for non-linearly separable data. Furthermore, we need the following definition.

Definition 1 ((α, β)-Stability Against Random Data Corruption). Let α, β ∈ [0, 1]. Let L be
a learning algorithm, let T be a dataset, and let L(T) = h. Moreover, let Ah be the accuracy
of the learnt model h ∈ H on T . We say that L is (α, β)-stable on T , if when one removes up
to an α-fraction of T chosen uniformly at random, and then use L to learn a model h′ using
the remaining examples, then it holds that Ah′ ≥ Ah − β.

The fine point is that initially our leaner has access to examples of the form Tv =
((x1, y1, f1), . . . , (xm, ym, fm)), where fi ∈ {é,Ë}, indicating whether the information con-
tent of xi and yi has been modified or not. As a consequence, the dataset Tv is sanitized by
simply dropping all the examples of the form (xi, yi,é) and learning with the rest. See also
Section 3.1 for more details.

2.1 The Perceptron Learning Algorithm

A perceptron h maintains a set of weights w ∈ R
n and classifies an instance x with label ℓ

according to the rule h(x) = ℓ = sgn (〈w,x〉). Upon predicting ℓ, the perceptron updates its
weight vector w using the rule w ← w + η(y − ℓ)x, where η is the learning rate and y is the
correct label. This rule, when applied on the misclassified examples (weights are updated only
when mistakes occur), learns a halfspace that correctly classifies all training data assuming
linear separability.

2.2 The Pocket Algorithm

The pocket algorithm is more useful as it applies the same update rule as the perceptron,
but also stores (in its pocket) the best weights that have been discovered during the learning
process; thus, allowing us to identify good solutions even for non-linearly separable data.
Algorithm 1 has the details, where by following Gallant’s notation [11], we have the following
variables: π are the current weights of the perceptron; w are the weights of the best perceptron
that we have encountered so far; runπ corresponds to the number of consecutive correct
classifications using the current weights, when we select examples from T at random; runπ

corresponds to the number of consecutive correct classifications that the weights that we
have in our pocket (i.e., the best weights that we have encountered so far), when we select
examples from T at random; num_ok

π
is the true number of examples from T that the

4

Algorithm 1: “Pocket” Version of the Perceptron Learning Algorithm

Data: Training examples T .
Result: Best weight vector w, in the sense that the induced halfspace classifies T

with as few misclassifications as possible.
1 π ← 0 ; /* Initialize to zero all coordinates */

2 runπ, runw, num_ok
π
, num_ok

w
← 0;

3 Randomly pick a training example (xi, yi);
4 if π correctly classifies (xi, yi) then

5 runπ ← runπ + 1;
6 if runπ > runw then

7 Compute num_ok
π

by checking every training example;
8 if num_ok

π
> num_ok

w
then

9 w ← π ; /* Update the best weight vector found so far */

10 runw ← runπ;
11 num_ok

w
← num_ok

π
;

12 if all training examples correctly classified then

13 stop (the training examples are separable)

14 else

15 π ← π + yi · xi ; /* Form a new vector of perceptron weights */

16 runπ ← 0;

current weights π of the perceptron classify correctly; and num_ok
w

is the true number of
examples from T that the weights w that we have in our pocket classify correctly. Hence,
the “best” pocket weights correspond to to the weights that classified correctly the maximum
number of examples from the collection T during training.

Gallant has provided sample complexity bounds for different topologies of perceptron
networks. Proposition 1 below is a simplification of a result from [11], adapted to the “single-
cell” model (i.e., a single neuron; a perceptron).

Proposition 1 (See [11]). Let ε be the true error and ε◦ be the error over T , after learning.
Let S = (ε − ε◦)/ε; i.e., S is the slack given to the algorithm between the true error ε and

empirical error ε◦. Also, let L = ‖w‖2 =
√

∑n
j=0w

2
j be the length of the weight vector of the

learnt perceptron. Then, with probability at least 1 − δ, the learnt perceptron will have true
error rate at most ε, if the number of training examples m is larger than

min

{

8
S2ε

max
{

ln (8/δ) ,min{2(n+ 1), 4(n+ 1) log2(e)} ln
(

16
S2ε

)}

,

ln(1/δ)+(n+1) ln(2L+1)
S2ε

min
{

1
2ε , 2

}

}

.

3 Methodology and Resources

3.1 Random Data Corruption and Sanitization

We simulate the process of verifiable random data corruption affecting our dataset, by ignoring
random groups of examples in our dataset and using the rest (where the checksums indicate no
tampering) for training. Algorithm 2 summarizes this approach, where the whole evaluation

5

Algorithm 2: Random Data Corruption, Sanitization, and Learning

Data: Training examples T , validation examples Γ.
1 for R runs do

2 Split T into B buckets
3 for b = B down to 1 do

4 Select a random permutation of b buckets to form an uncorrupted set of
training examples Tclean and ignore the examples in T \ Tclean which are
assumed to be verifiably corrupted and thus discardedq m

5 Train a perceptron h with the “pocket” algorithm using Tclean (Algorithm 1)
6 Collect the accuracy of h over the validation examples Γ

process is repeated R times in order to smooth the results and understand better the expected,
as well as the extreme, values of the performance of the learnt model. We test the above
method using both synthetic, as well as real-world, datasets, of varying dimensions, in order
to better understand the behavior of perceptrons when the available data has been corrupted
(verifiably) at random instances.

3.2 Description of Synthetic Datasets

We constructed two synthetic datasets by randomly sampling 3,000 points from a specified
dimensional space and labeling them using a pre-selected linear or non-linear model. In par-
ticular, for each dataset, we sampled n ∈ {4, 10, 25, 50, 100} dimensional spaces with attribute
values ranging between −10 and +10, following a uniform distribution in that interval. We
then added an extra parameter with a constant value of +1 to be used as bias. For the linearly-
separable synthetic dataset, we randomly sampled a baseline perceptron’s parameters and we
used it to produce the label of each point. For the non-linearly separable case, we used an
n-degree polynomial of the form c0 + c1x1 + c2x

2
2 + c3x

3
3 + ... + cnx

n
n, with randomly-chosen

constants between -1 and +1. We obtained the labels by using the sign function of the output
from the polynomial.

3.3 Description of Real-World Datasets

Table 1: Summary of real-world datasets used
in our experiments.

Dataset n
Number of Minority-Class Linearly
Examples Percentage Separable

Iris 4 150 33.3% yes
Skin 3 245,057 26.0% no
SPECT 22 267 20.6% no
Spam 57 4,601 39.4% no
Bank 95 6,819 3.2% no

We also performed experiments with five
real-world datasets. Two datasets had com-
parable dimension; ‘Iris’ is linearly separable
while the skin segmentation (‘Skin’) dataset
is not. In order to get a better picture we
explored the behavior of three more datasets
of larger dimension: ‘SPECT’, ‘Spam’, and
‘Bank’, corresponding respectively to the
SPECT heart dataset, the spambase dataset,
and the Taiwanese bankruptcy prediction
dataset. Table 1 has details. All datasets
are available at the UCI repository.1

1Homepage: https://archive.ics.uci.edu

6

https://archive.ics.uci.edu

Table 2: Worst-case accuracy of perceptrons on synthetic datasets.

(a) Synthetic linearly separable data. Worst-case
accuracy shown over 100 runs.

Corruption Data Dimensionality (n)
Level 4 10 25 50 100

0% 0.993 0.988 0.980 0.968 0.961
25% 0.990 0.985 0.978 0.968 0.958
50% 0.991 0.983 0.970 0.961 0.936
75% 0.983 0.973 0.961 0.925 0.885
90% 0.958 0.951 0.911 0.850 0.790
95% 0.948 0.886 0.831 0.753 0.681
99% 0.746 0.705 0.623 0.586 0.555

(b) Synthetic non-linearly separable data. Worst-
case accuracy shown over 100 runs.

Corruption Data Dimensionality (n)
Level 4 10 25 50 100

0% 0.935 0.800 0.676 0.583 0.513
25% 0.935 0.801 0.665 0.591 0.521
50% 0.921 0.770 0.663 0.581 0.536
75% 0.905 0.776 0.643 0.551 0.518
90% 0.891 0.730 0.621 0.558 0.488
95% 0.863 0.706 0.538 0.508 0.478
99% 0.721 0.468 0.491 0.468 0.458

3.4 Training Set, Validation Set, Buckets, and Smoothing

Apart from the Iris and SPECT datasets which have only 150 and 267 instances respectively, in
the other cases (synthetic, or real-world data), we sampled 3,000 data points at random. Such
a number is more than sufficient for low dimensions, but is typically too small for traditional
values obtained from statistical learning theory for datasets with n ≥ 50 dimensions, when
one wants (excess) error rate ε − ε◦ ≤ 1% with confidence 1 − δ ≥ 99%. Nevertheless, this
amount seems reasonable given the size, in terms of the number of examples, of the real-world
datasets that we explore – and in general, this is a reasonable size for real-world datasets.
In every case, we performed an 80-20 split for the creation of the training examples T and
validation examples Γ that are mentioned in Algorithm 2. We then subdivided T into B = 100
buckets of equal size and applied Algorithm 2 for the calculation of the performance (on the
validation set Γ) of the models obtained, over R = 100 runs, using the pocket algorithm.
Each run would process at most 3,000|T | training examples.

4 Experimental Results and Discussion

Source code is available at github.com/aguilarjose11/Perceptron-Corruption.

4.1 Experimental Results and Discussion on Synthetic Datasets

Table 2 presents the worst-case accuracy attained by perceptrons when learning synthetic
datasets of different dimensions, covering both linearly separable as well as non-linearly sepa-
rable data. Worst-case accuracy drops more than 3.5% only after 50% of the linearly-separable
data has been corrupted, or more than 75% of the non-linearly separable data has been cor-
rupted. In other words, by Definition 1, perceptrons are (0.5, 0.035)-stable for linearly sepa-
rable data and (0.75, 0.035)-stable for non-linearly separable data, in the worst case. Using
a similar table (not shown in the paper) for the average-case accuracy, perceptrons were, on
average, (0.5, 0.018)-stable on linearly separable data and (0.75, 0.018)-stable on non-linearly
separable data. Another takeaway is that perceptrons are (0.25, 0.01)-stable in the worst case,
regardless of the synthetic dataset.

7

https://github.com/aguilarjose11/Perceptron-Corruption

4.2 Experimental Results and Discussion on Real-World Datasets

Table 3 shows the average-case and worst-case performance of perceptrons on the datasets
that we described in Section 3.3. Apart from SPECT, perceptrons are (0.5, 0.023)-stable and

Table 3: Mean and worst-case accuracy attained by perceptrons when learning real-world
datasets. Values calculated over 100 runs.

(a) Mean accuracy on real data.

Corruption Data Source
Level Iris Skin SPECT Spam Bank

0% 0.999 0.935 0.753 0.901 0.966
25% 0.998 0.934 0.734 0.898 0.967
50% 0.998 0.933 0.718 0.891 0.966
75% 0.998 0.929 0.709 0.879 0.968
90% 0.986 0.925 0.707 0.856 0.969
95% 0.956 0.922 0.705 0.824 0.971
99% 0.727 0.888 0.715 0.705 0.986

(b) Worst-case accuracy on real data.

Corruption Data Source
Level Iris Skin SPECT Spam Bank

0% 0.966 0.905 0.643 0.864 0.961
25% 0.966 0.905 0.630 0.864 0.959
50% 0.966 0.910 0.575 0.841 0.959
75% 0.966 0.906 0.602 0.841 0.953
90% 0.666 0.901 0.493 0.766 0.941
95% 0.633 0.878 0.410 0.753 0.931
99% 0.333 0.726 0.205 0.549 0.878

(0.75, 0.023)-stable in the worst case; i.e., perceptrons are similarly stable compared to our
observations on the synthetic datasets. However, on SPECT, perceptrons are only (0.5, 0.068)-
stable in the worst case. Finally, perceptrons, including SPECT, are (0.25, 0.013)-stable in
the worst case.

Note that the different classes are represented in an imbalanced way in the datasets; see
Table 1 for the ratio of the minority class in every case. Class imbalance can be a nuisance for
classification [8, 15]. One trivial solution under class imbalance is to predict according to the
majority class. Under no corruption, and with the exception of SPECT, perceptrons were able
to form a better solution than this trivial approach, whereas for SPECT it was the case that
not even such a good solution was found. Nevertheless, in order to better understand how far
one can go with imbalanced datasets, we also applied the Synthetic Minority Over-sampling
Technique (SMOTE) [6], a popular method for dealing with class imbalance. The experiments
using SMOTE had mixed results: SMOTE helped with the accuracy on the Skin dataset, but
hurt the accuracy of the models in the other cases. Also, in some cases we identified a tradeoff
between less accuracy and higher stability, but this observation was not consistent among all
the datasets that we explored. Table 4 has details for the average case when SMOTE was
applied in the training dataset.

Table 4: Mean accuracy on real-world data after applying SMOTE on the training set.

Corruption Data Source
Level Iris Skin SPECT Spam Bank

0% 0.998 0.937 0.703 0.901 0.617
25% 0.999 0.936 0.689 0.899 0.617
50% 0.997 0.935 0.689 0.893 0.616
75% 0.997 0.932 0.654 0.882 0.618
90% 0.996 0.928 0.623 0.858 0.626
95% 0.981 0.925 0.593 0.837 0.637
99% 0.730 0.914 0.534 0.723 0.712

8

4.3 Empirical Investigation of Gallant’s Bound

In all of our experiments with separable and non-separable data, we compared the empirical
accuracy that we obtained in our experiments, with the (lower bound) on the accuracy that
is implied by Proposition 1 when we require failure probability δ = 1%. Proposition 1 was
tighter on non-linearly separable data. Figure 1 gives an example of such a comparison on
the non-linearly separable synthetic dataset of dimension n = 25.

Figure 1: Mean accuracy of perceptrons learnt on synthetic non-linearly separable datasets
(n = 25) against the lower bound on the accuracy obtained from Proposition 1 using δ = 0.01.

5 Conclusion

Perceptrons appear to be remarkably stable when learning with reduced sample sizes. In all
of our experiments removing up to 25% of the initial training sets would lower the accuracy
of the learnt perceptron by not more than 1.3%. Furthermore, SPECT appears to be a
harder dataset compared to all the other datasets tested; perceptrons failed to find even
trivial solutions such that one can unconditionally predict according to the majority class and
achieve better accuracy. This phenomenon complements [2] in the sense that SPECT appears
to be a dataset where perceptrons require an extended amount of time for identifying a good
solution. Finally, we observed empirically that Gallant’s bound on the pocket algorithm is
tighter for non-linearly separable data.

One avenue for future work could be the exploration of penalty mechanisms embedded
into the “pocket” algorithm, along the lines of regularization, so that we can obtain even more
interpretable solutions for problems of interest, or accelerate learning similar to [10]. Another
idea is the investigation of the reproducible weak halfspace learner from [16] and study its
stability in this framework.

Acknowledgements. Part of the work was performed at the OU Supercomputing Center
for Education & Research (OSCER) at the University of Oklahoma. The work was supported
by the second author’s startup fund. The first author worked on this topic while he was an
undergraduate McNair Sholar.

9

References

[1] Barocas, S., Hardt, M., Narayanan, A.: Fairness and Machine Learning: Limitations and
Opportunities. fairmlbook.org (2019), http://www.fairmlbook.org

[2] Baum, E.: The Perceptron Algorithm Is Fast for Non-Malicious Distributions. In:
NeurIPS 1989. vol. 2, pp. 676–685. Morgan-Kaufmann (1989)

[3] Biggio, B., Nelson, B., Laskov, P.: Poisoning Attacks against Support Vector Machines.
In: ICML 2012. icml.cc / Omnipress (2012)

[4] Brown, T.B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., etal: Language
models are few-shot learners. In: NeurIPS 2020, virtual (2020)

[5] Quiñonero Candela, J., Sugiyama, M., Schwaighofer, A., Lawrence, N.D.: Dataset Shift
in Machine Learning. The MIT Press (2008)

[6] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: Synthetic Minor-
ity Over-sampling Technique. J. Artif. Intell. Res. 16, 321–357 (2002)

[7] Dekel, O., Shamir, O., Xiao, L.: Learning to classify with missing and corrupted features.
Mach. Learn. 81(2), 149–178 (2010)

[8] Diochnos, D.I., Trafalis, T.B.: Learning Reliable Rules under Class Imbalance. In: SDM.
pp. 28–36. SIAM (2021)

[9] Fellicious, C., Weißgerber, T., Granitzer, M.: Effects of Random Seeds on the Accuracy
of Convolutional Neural Networks. In: LOD 2020, Revised Selected Papers, Part II.
Lecture Notes in Computer Science, vol. 12566, pp. 93–102. Springer (2020)

[10] Flansburg, C., Diochnos, D.I.: Wind Prediction under Random Data Corruption (Stu-
dent Abstract). In: AAAI 2022. pp. 12945–12946. AAAI Press (2022)

[11] Gallant, S.I.: Perceptron-based learning algorithms. IEEE Trans. Neural Networks 1(2),
179–191 (1990)

[12] García-Laencina, P.J., Sancho-Gómez, J., Figueiras-Vidal, A.R.: Pattern classification
with missing data: a review. Neural Comput. Appl. 19(2), 263–282 (2010)

[13] Goldblum, M., Tsipras, D., Xie, C., Chen, X., Schwarzschild, A., Song, D., Madry, A.,
Li, B., Goldstein, T.: Dataset Security for Machine Learning: Data Poisoning, Backdoor
Attacks, and Defenses. IEEE Trans. Pattern Anal. Mach. Intell. 45(2), 1563–1580 (2023)

[14] Goodfellow, I.J., McDaniel, P.D., Papernot, N.: Making machine learning robust against
adversarial inputs. Commun. ACM 61(7), 56–66 (2018)

[15] He, H., Garcia, E.A.: Learning from Imbalanced Data. IEEE Transactions on Knowledge
and Data Engineering 21(9), 1263–1284 (2009)

[16] Impagliazzo, R., Lei, R., Pitassi, T., Sorrell, J.: Reproducibility in learning. In: STOC
’22. pp. 818–831. ACM (2022)

10

http://www.fairmlbook.org

[17] Kearns, M.J., Li, M.: Learning in the Presence of Malicious Errors. SIAM J. Comput.
22(4), 807–837 (1993)

[18] Koh, P.W., Liang, P.: Understanding black-box predictions via influence functions. In:
ICML 2017. Proc. of Mach. Learn. Res., vol. 70, pp. 1885–1894. PMLR (2017)

[19] Koh, P.W., Steinhardt, J., Liang, P.: Stronger data poisoning attacks break data saniti-
zation defenses. Mach. Learn. 111(1), 1–47 (2022)

[20] Krishnaswamy, A.K., Li, H., Rein, D., Zhang, H., Conitzer, V.: Classification with
Strategically Withheld Data. In: AAAI 2021. pp. 5514–5522. AAAI Press (2021)

[21] Laird, P.D.: Learning from Good and Bad Data, vol. 47. Springer Science & Business
Media (2012)

[22] Marcus, G.: Hoping for the Best as AI Evolves. Commun. ACM 66(4), 6–7 (Mar 2023),
https://doi.org/10.1145/3583078

[23] Molnar, C.: Interpretable Machine Learning. Independently Published, 2 edn. (2022),
https://christophm.github.io/interpretable-ml-book

[24] Rosenblatt, F.: Principles of Neurodynamics. Spartan Books, New York (1962)

[25] Rudin, C.: Stop explaining black box machine learning models for high stakes decisions
and use interpretable models instead. Nat. Mach. Intell. 1(5), 206–215 (2019)

[26] Shafahi, A., Huang, W.R., Najibi, M., Suciu, O., Studer, C., Dumitras, T., Goldstein,
T.: Poison frogs! targeted clean-label poisoning attacks on neural networks. In: NeurIPS
2018. pp. 6106–6116 (2018)

[27] Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning - From Theory to
Algorithms. Cambridge University Press (2014)

[28] Valiant, L.G.: A theory of the learnable. Commun. ACM 27(11), 1134–1142 (1984)

[29] Varshney, K.R.: Trustworthy Machine Learning. Independently Published, Chappaqua,
NY, USA (2022)

[30] Vorobeychik, Y., Kantarcioglu, M.: Adversarial Machine Learning. Synthesis lectures
on artificial intelligence and machine learning, # 38, Morgan & Claypool, San Rafael,
California (2018)

11

https://doi.org/10.1145/3583078
https://christophm.github.io/interpretable-ml-book

	Introduction
	Related Work
	Our Setting: Verifiable Random Data Corruption

	Preliminaries and Background
	The Perceptron Learning Algorithm
	The Pocket Algorithm

	Methodology and Resources
	Random Data Corruption and Sanitization
	Description of Synthetic Datasets
	Description of Real-World Datasets
	Training Set, Validation Set, Buckets, and Smoothing

	Experimental Results and Discussion
	Experimental Results and Discussion on Synthetic Datasets
	Experimental Results and Discussion on Real-World Datasets
	Empirical Investigation of Gallant's Bound

	Conclusion

