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Abstract

A new model for on-line learning is introduced. In this model the environment is
assumed to be oblivious to the learner: it supplies an arbitrary (not necessarily random)
sequence of examples for the target concept which does not depend on the sequence of
hypotheses of the learner. This model provides a framework for the design and analysis of
on-line learning algorithms which acquire information not just from counter examples, but
also from examples which support their current hypothesis. It is shown that for various concept
classes C an arbitrary target concept from C can be learned in this model by a ramdomized
learning algorithm (which uses only hypotheses from C) with substantially fewer prediction
errors than in Angluin’s classical model for on-line learning with an adaptive worst-case
environment. In particular any target-setting of weights and threshholds in a feed forward
neural net can be learned by a randomized learning algorithm in this model with an expected
number of prediction errors that is polynomial in the number of units of the neural net.

For comparison we also examine the power of randomization for Angluin’s model for
learning with an adaptive environment.
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1. Introduction.

The most common computational model for on-line (or: “incremental”) learning is due to Angluin
[A]. In this model the learner proposes “hypotheses” H from a fixed “concept class” C C 2% over a
finite domain X . The goal of the learner is to “learn” an unknown “target concept” C'r € C that has
been fixed by the “environment”. Whenever the learner proposes some hypothesis H with H # Cr,
the environment responds with some “counterexample” z € HACT := (Cr — H)U(H - Cr). z'is
called a “positive counterexample” if z € Cr — H, and z is called a “negative counterexample” if
z € H — Cr. A learning algorithm for C is any algorithm A that produces new hypotheses

7 — . A A
Ht'-l-l = A(zl,... i ‘Hl gass ,.H" )

in dependence of counterexamples z; € H;-‘ACT for the preceding hypotheses H;-*. (One also refers
to these hypotheses as “equivalence queries” [A]).

The “learning complexity” LC(A) of such a learning algorithm A is defined by

LC(A) := max{i € N | there is come Cr € C and some choice
of counterexamples z; € H fACT for
j=1,...,i—1such that H? # Cr}.

The “learning complexity” LC(C) of a concept class C is defined by

LC(C) := min{LC(A) | A is a learning algorithm for C which
only uses hypotheses from C}.

We set

LC-ARB(C) := min{LC(A) | A is a learning algorithm for C which uses
arbitrary subsets of the domain X as hypotheses}.

One may argue that the previously defined learning model is quite “pessimistic”. The definition
of LC(A) implicitly assumes that the environment is “adaptive” to the learner: the definition of
LC(A) is based on the assumption that the environment “knows” the current hypothesis H of the
learning algorithm A and that it supplies among all possible counterexamples z € HACT the “least
informative” one. It is difficult to imagine a learning situation where this pessimistic view of the
environment as an “adaptive” (and malicious) adversary is actually justified. Hence a large lower
bound for LC(C) does not necessarily imply that C is not on-line learnable in the presence of a
non-probabilistic worst case environment. -

We introduce in this paper a variation of Angluin’s learning model where we assume that the
environment is “oblivious” to the activities of the learner. More precisely, we assume that the
environment provides an arbitrary sequence S of positive and negative examples for the target
concept independently of the learning algorithm that is used by the learner. Thus one may just as
well assume that the environment has determined both this sequence S of examples and the target
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concept before the learning process begins. The learner (more precisely: the learning algorithm)
processes these examples in an on-line fashion. Analogously as in the classical learning models for
perceptrons ([R], [MP]) and neural networks ([N], [RM]) the learner is allowed to alter his hypothesis
at each step where the current example provides a counterexample to his current hypothesis (one
calls such an event a “prediction error”, or simply an “error”). We refer to the other examples (z,b)
in § (where the given classification b = Cr(z) agrees with the “prediction” H(z) of the current
hypothesis H) as supporting examples. In the learning model defined below we assume that the
learner does not change his hypothesis when he encounters a supporting example, but he may store
any supporting example that he receives (as well as any counterexample) for later use.

It is obvious that for the case of a deterministic learning algorithm A it makes no difference whether
the environment is adaptive or oblivious: the oblivious environment can predict all later reactions of
a deterministic algorithm A, hence it can write down already at the beginning of the learning process
a sequence S which consists of the “optimal” moves of an adaptive adversary in a learning process
with this learning algorithm A. Therefore we consider in the following definition immediately the
case of randomized learning algorithms.

Whenever we define the learning complexity for a model where randomized learning algorithms are
permitted, we will write “RLC” instead of “LC”. In order to distinguish the learning complexity
in the new model with an oblivious environment from the previously given learning complexity in
Angluin’s models with an adaptive environment we use for the new model the suffix “OBL” (e.g.
RLC-OBL(C)). We will always denote the domain of a concept class C by X, and we write X< for
the set of all finite and infinite sequences of elements of X. For any C € C and S = (z1,22,...) €
X% we write §€ for the associated sequence ( (z1,C(z1)}), (z2,C(22)),...) of labeled examples
for C (each concept C.is identified with its characteristic function.xc : X — {0,1}).

A deterministic learning algorithm A for a concept class C processes an arbitrary labeled sequence
SCT (for some target concept Cr € C and some § € XS°) as indicated above. In particular A
computes a new hypothesis H' € C (as a function of { {(z1,Cr(21)},... ,{Zt-1,Cr(%1-1)) )) at each
step t where A makes a prediction error (i.e. H(z;)# Cr(z:) for the current hypothesis H € C
of A). We write Errors(4,Cr,S) for the total number of prediction errors of A for the labeled
sequence ST,

A randomized learning algorithm B for a concept class C is a probability distribution @ g(A) over
deterministic learning algorithms A for C. We set Errors(B,Cr,S) := Eaeqg(Errors(4, Cr, 5)),

RLC-OBL(B) := max{Errors(B, Cr, ) | Cr € C,S € X5},
RLC-OBL(C) := min{RLC-OBL(B) | B is a randomized learning algorithm for
C which only uses hypotheses from C}.

A learning algorithm for this model RLC-OBL has to perform well even if the environment does
not behave like a time-invariant stochastic process. Examples of learning situations where it is
not adequate to view the environment as a time-invariant stochastic process are provided by some
customary training methods for artificial neural nets [RM] and by systems for speech recognition
and optical character recognition.



So far the investigation of on-line learning with a non-stochastic environment has focused on learn-
ing from counterexamples. However various natural and artificial learning systems draw information
both from counterexamples and from examples which support their current hypotheses. The con-
sidered model for on-line learning with an oblivious environment provides a theoretical framework
for the investigation of this more powerful type of learning algorithms.

2. Error-bounds for Randomized On-line Learning Algorithms with an Oblivious En-
vironment.

Theorem 2.1. For any finite concept class C
RLC-OBL(C) £ In|C| + O(1).

Sketch of the proof. Let GUESSING. be the following randomized learning algorithm for C:
after any prediction error pick as next hypothesis uniformly random any concept C € C which is
consistent with all preceding examples (i.e. all previously seen supporting examples and counterex-
amples).

The power of this simple learning algorithm is demonstrated by the following observation: Consider
a learning process with GUESSING¢ for some arbitrary Cr € C, § = (21,%2,...) € X%, Assume
that GUESSING¢ makes a prediction error for the t-th element z; of §. Define

Ce:={C€C|C(z;) = Cp(zi) for i = 1,... ,t}.

Consider any linear order <; on C; which is consistent with the order in which these concepts will
be eliminated by the subsequent examples

(2441,Cr(2141))s (Te42,CT(Te42))s: -

from S°T. With probability } the hypothesis H € C; which is chosen at step ¢ by GUESSINGc
occurs in the second half of <;. If this happens, then at least half of the other concepts C € C, will
have been eliminated by some example in S before the first step ¢’ > ¢ where the algorithm makes
the next prediction error (thus ' := min{t > t | H(z;) # Cr(z;)}).

For a precise proof of Theorem 2.1 one uses the preceding argument in order to show by induction
on n that for all » > 1 and all concept classes C of size n

RLC-OBL(GUESSING¢) < Th,

where T, is defined by

T; =0 and T, =n;1 +T1+";I+T""I forn> 1.

It is easy to show that T, = i L =Inn+0(1) (see [K]).
i=2
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It turns out that T, is in fact an optimal upper bound for RLC-OBL(GUESSING¢) for concept
classes C of size n: For C, := SINGLETON,, := {{i} | i € {1,... ,n}} one can show by induction
on n that RLC-OBL(GUESSINGe,,) = Th.- a

Corollary 2.2. There is a randomized on-line learning algorithm for arbitrary feedforward nets
(= circuits with "sharp” Boolean threshold gates) that is expected to make at most polynomially
in the size of the net many prediction errors for an arbitrary oblivious environment:

Let G be an arbitrary directed acyclic graph with exactly one node of outdegree 0 and n nodes of
indegree 0 (labeled by 1,... ,n). Define the associated concept class as follows:

Cg :={C C {0,1}" | there is an assignment of weights from R to edges in G and an
assignment of thresholds from R to nodes of indegree > 0
in G such that the resulting feedforward neural net (with

“sharp” Boolean threshold gates) computes C'}.

Then RLC-OBL(Cg) = O((number of edges in G)?).

Idea of the proof. Exploit the fact that log|Cg| = O((number of edges in G)?).

Note that it is essential for a learning algorithm for a feedforward neural net G that it only uses

hypotheses H that can be represented by some setting of weights and thresholds in G (i.e. H € Cg).
O

Corollary 2.3. Let Cxn = {C C {0,1}" | C is definable by a monomial with at most k literals
over the Boolean variables zy,... ,Z,}.

Then RLC-OBL(Cx,n) = O(k - logn). O
Corollary 2.4. For an arbitrary polynomial p(n) set Cp 5 := {C C {0,1}" | C is definable by a
DNF-formula of length < p(n) over the Boolean variables zy,... ,Z.}.

Then RLC-OBL(C,,n) = O(p(n) - log n). O

The following lower bound result was first observed by Nick Littlestone [L2]. It improves an earlier
result due to Kurt Mehlhorn and the author, who had shown that RLC(C) > 7 - LC-ARB(C).

Theorem 2.5. (Littlestone [L2]): For any finite concept class C
RLC-OBL(C) > = - LC-ARB(C).

Proof. Consider any randomized learning algorithm B for C C 2% and a decision tree T for C in
which every leaf has depth > LC-ARB(C) (such T exists by [L1], see also [MT]). Construct in T' a
path S from the root to a leaf by recursion. If the so far constructed path S’ ends at an internal
node v with label z € X let p, be the probability that B predicts that Cr(z) = 1 (after B has
processed the sequence of labeled examples which is encoded by 5'). Extend S’ by one of the two
edges that leave node v according to the following rule: choose the edge with label “0” iff p, > 1.
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The constructed path S has length £ > LC-ARB(C) and ends at a leaf with some Cr € C as label.
By construction one has Errors(B,Cr,S) 2 ¢/2. O

Remark 2.6. The preceding lower bound is optimal insofar as there are concept classes C for
which RLC-OBL(C) = % - LC-ARB(C) (for example take C = 22),

In the following theorem we compare for arbitrary concept classes C the learning complexities
LC-ARB(C), RLC-OBL(C), LC(C). We write A < B if YC(A(C) = O(B(C))) and for some family
(Co)nen of concept classes B(Cy,) grows faster than any polynomial in A(C,).

Theorem 2.7. LC-ARB < RLC-OBL < LC.

Sketch of the proof. In order to separate RLC-OBL from LC-ARB we show that
RLC-OBL(SINGLETON,) = Q(log n) (it is obvious that LC-ARB(SINGLETON,) = 1). We apply
in this lower bound argument Von Neumann’s minimax theorem ([V], see also [LR], [Y]) to a matrix
with rows indexed by arbitrary elements (Cr, S) from SINGLETON, x {1, ... ,1&}5”12 and columns
indexed by arbitrary deterministic learning algorithms A for SINGLETON,, (restricted to example
sequences S of length < n?). The matrix entry for row (C7, S) and column A is Errors(4, Cr, §).
The minimax theorem implies that in order to prove that RLC-OBL(SINGLETON,) = Q(logn
it is sufficient to show that there exists some distribution P, over SINGLETON,, x {1,... ,n}s"
such that for every deterministic learning algorithm A for SINGLETON,, one has

E'Pn({C'T.S)) (Errors(A,CT, S)) = Q(log n).
We will show that the following distribution P, has the desired property. Pn is the uniform
distribution over

Dy, := {{{r(n)}, Sz} | = is a permutation of {1,...,n} and S, is an associated sequence
. (with repetitions) that begins with n copies of 7(1), and in which

n copies of the subsequence {r(1),...,7(i)) are followed by n

copies of the subsequence (x(1),...,7(i+1)}, i=1,...,n—1}
We set P,({Cr,S5)) =0 for (C7,S) & Dh.
Because of the repetitions in the sequence Sy one can associate with any deterministic learning
algorithm A for SINGLETON,, another deterministic learning algorithm A’ for SINGLETON,,
with Errors(A,Cr,S) > Errors(A',Cr, S) for all (Cr,S) € D, such that A’ is consistent (i.e. each
hypothesis of A’ is consistent with all previously seen examples). Hence it is sufficient to show for
an arbitrary consistent deterministic learning algorithm A that

TA = Q(log n),
where
TA = E‘pﬂ((cT‘s))(ErIOIS(A,CT,S)).

This lower bound follows from the observation that

TA - ﬂ.—]. +T{‘+--.+Trf_1

= n n '
The other claims of Theorem 2.7 are consequences of Theorem 2.1 and Theorem 2.5 (consider
SINGLETON,, in order to separate RLC-OBL from LC). a
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Remark 2.8.

(a) The preceding argument together with the proof of Theorem 2.1 shows that GUESSING is an
optimal learning algorithm for SINGLETON,, in the model RLC-OBL.

(b) It is not the case that for all concept classes C one has RLC-OBL(GUESSING¢) =
®(RLC-OBL(C)). For example for C, := SINGLETON, U {#} one has RLC-OBL(C,) < LC(C») =
1, but RLC-OBL(GUESSING¢,) = O(log n).

(c) Apparently there exists a trade-off for on-line learning with an oblivious environment between
the number of random bits that are used by a learning algorithm and the “simplicity” of its
hypotheses. The algorithms GUESSING and the halving algorithm lie at opposite ends of this
spectrum.

3. The Power of Randomization for On-line Learning with an Adaptive Environment.

It is not clear from the results of the previous section how much of the performance of the considered
learning algorithms should be credited to the use of randomized algorithms, and how much is due to
the assumption that the environment is oblivious. We show in this section that randomized learning
algorithms can achieve only a substantially smaller improvement in the error bound (compared with
the best deterministic learning algorithm) in the case of Angluin’s model where the environment is
adaptive.

For any deterministic learning algorithm A for a concept class C and any target concept Cr € C
let Errors(A,Cr) be the maximal length of a learning process of algorithm A if C'r is the target
concept (assuming that the counterexamples to hypotheses of A are chosen by an adaptive adversary
as in the model of [A], [MT], see the definition of LC(A) in section 1). Thus Errors(4,Cr) =
max{Errors(4,Cr,§) | § € X5*°}. Let B be a randomized learning algorithm for C, i.e. B is a
distribution Q p(A) over deterministic learning algorithm A for C. Define for any C1 € C

Errors(B,Ct) := Epeqp(Errors(4,Cr)),
RLC(B) := max{Errors(B,Ct) | Cr € C}, and
RLC(C) := min{RLC(B) | B is a randomized learning algorithm
for C that only uses hypotheses from C}.

We show in Theorem 3.1 that RLC(C) < LC(C) for certain concept classes C. Theorem 3.2 provides
a lower bound for the power of randomization in the here considered model.

Theorem 3.1. RLC(C) = 1 - LC(C) for C = SINGLETON,, and C = 2{!~-m1, O
Theorem 3.2. For any finite concept class C with [C| > 1,
LC(C)
> ——
HLOC) 2 2log |C|”

Idea of the proof. We first observe that it is sufficient to consider in the definition of RLC(C)
only randomized learning algorithms B with the property that @ p(A) > 0 only if A is a consistent
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deterministic learning algorithm for C (A is called consistent if it always outputs hypotheses that
are consistent with the preceding counterexamples). There are only finitely many such algorithms
A, and hence we can apply Von Neumann’s minimax theorem [V] (again we only need its “easy”
inequality). However we apply it here for a different matrix than in the proof of Theorem 2.7.
Here the columns are labeled by consistent deterministic learning algorithms for C and the rows
are labeled by the concepts C' € €. The matrix entry for column A and row C is Errors(A4,C). The
minimax theorem implies that for any distribution P over C there is a deterministic learning algo-
rithm Ap for C such that Ep(cy(Errors(Ap,C)) < RLC(C). We exploit this fact for distributions
Pi, i € {1,..., log|C|"} over C which are defined as follows. Each P; is uniform on some subclass
C; C C and identically zero on C — C;. Set C; := C. Let C;4; be the class of all C € C; such that
Errors(Ap;,C) 2 2- RLC(C). The definitions of P; and Ap, imply that |Ciy1] < J%'-l The desired
deterministic learning algorithm A with LC(A) < log|C|"- 2 - RLC(C) executes in alternation one
step in each of the algorithms Ap,. i = 1,... ,"log|C|". A succeeds for any target concept Cr € C
after < "log|C[*-2- RLC(C) steps since one of the algorithms Ap, identifies Cr after < 2-RLC(C)
steps. O

4, Comparisons with other Prediction Models and Algorithms.

Angluin’s model for on-line learning [A] (this is the model LC which is defined at the beginning of
section 1) differs in three essential aspects from the prediction model of [HKLW], [HLW1] with a
stochastic environment, which is closely related to Valiant’s model for PAC-learning [V] (we refer
to the prediction model of [KHLW], [HLW1] in the following as “PAC prediction model™):

(a) the environment is represented in Angluin’s model by a worst case adaptive adversary, whereas
it is represented in the PAC prediction model by a worst case probability distribution over the
domain (in both models one considers the worst case choice of a target concept Cr € C)

(b) in Angluin’s model one measures the performance of a learning algorithm in terms of its total
number of errors, whereas in the PAC prediction model one is interested in the expected number
of errors for the first m examples

(c) in Angluin’s model the current hypothesis of the learning algorithm is always required to be
from the same concept class C as the target concept, whereas the hypothesis in the PAC prediction
model need not be from C.

The following result shows that the new model RLC-OBL for on-line learning with an oblivious
environment may be viewed as an interpolation between Angluin’s model and the PAC prediction
model: it is equivalent to a learning model which agrees in point (a) with the PAC prediction
model and in points (b) and (c) with Angluin’s model. In order to make this equivalence precise
we introduce the following notation,

Consider an arbitrary concept class C over a domain X (i.e. C C 2%) and an arbitrary distribution
D over X. For § € X* we write § € D® to indicate that § results from independent random
drawings from X according to D. For any deterministic learning algorithm A for C and any Cr € C
we define:

Errors(A,Cr, D) := Egepoo(Errors(A, Dr, S)),
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and for any randomized learning algorithm B
Errors(B,Cr, D) := Eseqg(Errors(4,Cr, D)).
Finally we define
RLC-PAC(B) := max{Errors(B,Cr,D) | Cr € C and D is a distribution over X}
and

RLC-PAC(C) := min{RLC-PAC(B) | B is a randomized learning algorithm for
C which uses only hypotheses from C}.

We have added the suffix “PAC” in “RLC-PAC” to indicate that with regard to the assumption
about the environment (point (a) in the preceding discussion) this model agrees with the PAC
prediction model. Note however that with regard to points (b) and (¢) RLC-PAC agrees with
Angluin’s model (and with RLC-OBL).

The following theorem shows that in the here considered context the assumption of an arbitrary
worst case oblivious environment is equivalent to that of a stochastic environment with a worst
case distribution.

Theorem 4.1. For very concept class C:
RLC-OBL(C) = RLC-PAC(C).

Idea of the proof. “>” is trivial. In order to prove “<” one associates with any sequence
S = (z1,73,...) of elements (w1th0ut repetitions) a suitable distribution Dg over X such that for
arbitrary random drawings § according to Ds the first occurrence of elements of X in S is likely
to be in the same order as in § (i.e. Ds(zy) > Dg(z2) > ...). Let B be any randomized learning
algorithm with RLC-PAC(B) = RLC-PAC(C). One defines for any § > 0 a learning algorithm
B;s with RLC-OBL(B;) < (1 + §8) - RLC-PAC(B) which generates (internally) for the prediction
for the t-th element z, of any given sequence S = (21,%3,...) € XS* the associated distribution
Dyz,,..,z;)- Bs predicts “z¢ € Cr” with probability p, where p; is defined as the probability
that B predicts “z; € Cr” for the first occurrence of z, in arbitrary sequences S that result from
random drawings accordmg to Dz, .. z,) (note that Bs might give different responses for the first
occurrence of z; in § in dependence on the number of repetitions of preceding elements in S) a

In the following we will compare the prediction performance of the very simple randomized algo-
rithm GUESSING (which was introduced in the proof of Theorem 2.1) with the performance of
other prediction algorithms (we view in this context the notions “learning algorithms” and “predic-
tion algorithms” as being equivalent). Since RLC-OBL(GUESSING¢) = O(log|C|), GUESSING,
will make for all C with log|C| <« LC(C) substantially fewer errors in a learning situation with
an oblivious environment than the best known prediction algorithm with hypotheses from C in
Angluin’s model.



The expected number of errors of GUESSING¢ is bounded above by the same parameter O(log |C|)
as the worst case number of error of the well-known halving algorithm (see [A], [L1], [MT]). The
latter algorithm performs well even against an adaptive environment and it requires no random
bits, but it uses hypotheses which do not belong to C (which are in general difficult to compute).
Haussler, Littlestone and Warmuth [HLW2] introduced the “1-inclusion graph prediction algorithm”
which also uses hypotheses that do not belong to C, and which is expected to make at most
O(VC-dim(C) - log m) prediction errors for m examples (but it requires that the examples result
from independent random drawings). This bound is smaller than log[C| for certain C and certain
values of m. A similar bound has been achieved for a probabilistic environment by Schapire [S]
for any PAC-learnable C with a computationally feasible prediction algorithm (this algorithm also
uses hypotheses which do not belong to C). Other prediction algorithms which use hypotheses
that do not belong to C result from the work by Littlestone and Warmuth [LW] on the weighted
majority algorithm (typically these algorithms use “nicer” hypotheses outside of C than the halving
algorithm, but they may make more errors than the halving algorithm).

In the full version of [LW] one can also find a discussion of a randomized version of the weighted
majority algorithm which uses only hypotheses from C and which works well even in the case of an
adaptive environment, but which requires to change the hypothesis after each example (not only
after prediction errors).

So far we have examined in this paper only the expected total number of errors for randomized
prediction algorithms in our new model with an arbitrary oblivious environment. The preceding
discussion showed that with regard to this measure GUESSING¢ is not surpassed by other known
prediction algorithms that use only hypotheses from C. It turns out that with regard to another
measure, the expected number of errors for the first m examples for any oblivious sequence S of
examples, one can design for certain concept classes C a variation of GUESSING¢ which performs
better than GUESSING.. However this is only possible for concept classes C with LC-ARB(C) <
log |C|, since even if the environment is oblivious one can construct for any randomized learning
algorithm B a target concept Cr € C and an oblivious sequence 5 of examples such that B is likely
to make for any m < LC-ARB(C) at least m /2 prediction errors for the first m examples in § (use
the construction in the proof of Theorem 2.5).

A typical concept class C with LC-ARB(C) < log|C| is SINGLETON,. The following result shows
that for this concept class C one can in fact design another randomized prediction algorithm with
hypotheses from C which is expected to make fewer prediction errors than GUESSING, for the
first m examples (for any m < nlogn and any oblivious sequence S of examples).

Theorem 4.2. There is a randomized prediction algorithm for SINGLETON, which only uses
hypotheses from SINGLETON,, and which is expected to make at most O(min(7},logn)) prediction
errors for the first m examples of any given (oblivious) sequence § € {1,... ,n}<%.

Idea of the proof. The algorithm GUESSING (see the proof of Theorem 2.1) does not achieve
this error bound since for many sequences § of m = n examples it is expected to make logn
errors. Therefore we combine GUESSING with another randomized prediction algorithm BLIND-
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GUESSING, which chooses after each error uniformly random any C € SINGLETON,, as next
hypotheses (C' need not be consistent with all previous examples). The claimed relative error
bound is achieved by the randomized prediction algorithm B that calls after the k-th prediction
error the algorithm GUESSINGsiNnGgLETON,, if & is even, and BLIND-GUESSINGsiNGLETON,, if £
is odd. O
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